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PREFACE.

I r is a remarkable fact in the historv of science, that

Elementary Geometry is still consii]<

of Euclid, at the distance of two tboi.

approved introduction to the mathematK n>le

distinction the Greek Geometer owes not < ct>

ness of his demonstrations, but to an arm ^ ed

for the purpose of instruction,—adTmntages \wii^k er-

tain eminence, secure the works of an au^^^^L ot time

more eflectuaily than even originality of invv^^^B '^i* Kl-
CLID, however, in passing through the hands^^B mg
the decline of science, had suffered some diminolHo <.ui

much skill and learning have been employed l^lli u-

cians to deliver them from blemishes which cortatnly ; -ir

original composition. Of these mathematicians, I iv

i>e accounted the last, has also been the most successiui. • ry

liitle room for the ingenuity of future editors to be exert Sy

amending the text 01 Ei;cLio, or by improving the iransKi : n u.

Sucli being the merits of Dr. Simsom's edition, and the r. r< ;>.ui't it has
met with having been every way suitable, the work now ofTereil <• ihc [Nib-

he will perhapa appear unnecessary. And indeed, if the gei> iu t> r just

named had wntten with a view of accommodating the Elemenu of KtcLtD
to the present state of the maihemaiical sciences, it is not likely 0. v. nnv
thing new in Elementary Geometry would have bdM soon attempt-

his iTesign was different ; it was hu object to restore the writings of i

to their original perfection, and to give them to Modem Europe as nearly
HA possible in the state wherein they made their first appearance in Ancieiit

Greece. For this imdertaking, nobody could be better qualified than Dr.

SiMso.<« ; who, to an accurate knowledge of the learned languages, and an
indefatigable spirit of research, added a profound akill in the ancient Geome-
try, and an admiration of it almost enthusiastic. Accordingly, he not only
restored the text of Euclid wherever it had been corrupteck but in some
cases removed imperfections that probably belonged to the original work :

though his extreme partiality for his author never permiued him to suppose
that such honour could fall to the share either of himself, or of any other of
the modems.

But, after all this was accomplished, something still remained to be done,
since, notwithstanding the acknowledged excellence of Edclio's Ele-
ments, it could not be doubted that some alterations tnight be made that

would acconunodate them better to a state of the mathenutical sciences, no

much more improved and extended than at the p<!riod when they were
written. Accordingly, the object of the edition now offered to the public, is

not so much to give the writings of Euclid the form which they originally

had, aa that which may at present render them most useful.
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One ol the alterations made with this view, respects the Doctrine of

Proportion, the method of treating which, as it is laid down in the fifth of

Euclid, has great advantages accompanied with considerable defects ; ot

wh?ch, however, it must be observed, that the advantages are essential, and

the cl':;fects only accidental. To explain the nature of the former requires

a more minute examination than is suited to this place, and must therefore

be reserved for the Notes ; but, in the mean time, it may be remarked, that

no definition, except that of Euclid, has ever been given, from which the

properties of proportionals can be deduced by reasonings, which, at the

same time that they are perfectly rigorous, are also simple and direct. As
to the defects, the prolixness and obscurity that have so often been com-

plained of in the fifth Book, they seem to arise chiefly from the nature of

the language employed, which being no other than that of ordinary dis-

course, cannot express, without much tediousness and circumlocution, the

relations of mathematical quantities, when taken in their utmost generality,

and when no assistance can be received from diagrams. As it is plain that

the concise language of Algebra is directly calculated to remedy this in-

convenience, I have endeavoured to introduce it here, in a very simple form

however, and without changmg the nature of the reasoning, or departing

in any thing from the rigour of geometrical demonstration. By this means,

the steps of the reasoning which were before far separated, are brought

near to one another, and the force of the whole is so clearly and directly

perceived, that I am persuaded no more difliculty will be found in under-

standing the propositions of the fifth Book than those of any other of the

Elements.

In the second Book, also, some algebraic signs have been introduced, for

the sake of representing more readily the addition and subtraction of the

rectangles on which the demonstrations depend. The use of such sym-
bolical writing, in translating from an original, where no symbols are used,

cannot, I think, be regarded as an unwarrantable liberty : for, if by that

means the translation is not made into English, it is made into that univer-

sal language so much sought after in all the sciences, but destined, it would
seem, to be enjoyed only by the mathematical.

The alterations above mentioned are the most material that have been
attempted on the books of Euclid. There are, however, a few others,

which, though less considerable, it is hoped may in some degree facilitate

the study of the Elements. Such are those made on the definitions in the

first Book, and particularly on that of a straight line. A new axiom is also

introduced in the room of the 12th, for the purpose of demonstrating more
easily some of the properties of parallel lines. In the third Book, the re-

marks concerning the angles made by a straight line, and the circumference

of a circle, are left out, as tending to perplex one who has advanced no
farther than the elements of the science. Some propositions also have
been added ; but for a fuller detail concerning these changes, I must refer

to the Notes, in which several of the more difficult, or more interesting sub-

jects of Elementary Geometry are treated at considerable length.

College of Edinburgh,
Dec. 1, 1813



ELEMENTS

or

GEOMETRY.

BOOK I.

THE PRINCIPLES.

BXPLANATION 07 TSftMS AND •IONS.

1. Geometry is a science which hss for its object the niewnreiiiftat ofnug^
nitudes.

MagnitadM may be consideredtrader three dimensioos,—Uagdi, breadth,

height or thickness.

2. In GeometiT there are several general tenne or principlee ; such as,

Deiaitions, Piopoeittons, Axaoms, TheoreoM, Problems, Lommas, Sobo
Itums, Corollaries, iLc.

9. A Dtfinition is the explication of any term or word in a science, ahow-
iug the sense and meaning in which the term is employed.
Every definition ought to be clear, and expressed in words that are

common and perfectly well imderstood.

4. An Axiom, or Mmanrnt^ is a self-erident proposition, requiring no formal

domonstration to move the truth of it ; but is received siul assented to as

soon as mentionea.

Such ss, the whole of any thing is greater than a part of it ; or, the

whole is equal to all iu parts taken together ; or, two quantities thai

are each of them equal to a third quantity, are equal to each other.

f . A Tktomn is a deroonstntiTo prooosition ; in which some propeity is

asserted, and the truth of ft reqtiu«d.to be proved.

Thus, when it is said that the siwi of the three ancles of say plane trio

angle is equal to two right angles, this is called a Tkoonm ; and tlie

method of collecting the aeveral arguments and proofs, and Uyin|
them together in proper order, by means of wbtcn the truth of the

propoaitlon becomes erident, is eiJled a Dtmonstr^itiom.

6 A Direct Demonstration is that which concludes with the direct and ce

tain proof of the proposition in hand.
It IS also called Positive or AJirwtatiftSt and sometimes an OxUnsivs Ds

wtonstration, because it is moat satiafactocy to the mind
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7. An Indirect or Negative Demonstration is that which shows a proposition

to be true, by proving that some absurdity would necessarily follow if

the proposition advanced were false.

This is sometimes called Reductio ad Abstirdum ; because it shows the

absurdity and falsehood of all suppositions contrary to that contained

in the proposition.

8 A Problem is a proposition or a question proposed, which requires a so-

lution.

As, to draw one line perpendicular to another ; or to divide a line into

two equal parts.

9. Solution of a problem is the resolution or answer given to it.

A Numerical or Numeral solution, is the answer given in numbers. A
Geometrical solution, is the answer given by the principles of Geome-
try. And a Mechanical solution, is one obtained by trials.

10. A Lemma is a preparatory proposition, laid down in order to shorten

the demonstration of the main proposition which follows it.

] 1 . A Corollary, or Consectary, is a consequence drawn immediately from

some proposition or other premises.

12. A Scholium is a remark or obsen'ation made on some foregoing propo-

sition or premises.

13. An Hypothesis is a supposition assumed to be true, in order to argue

from, or to found upon it the reasoning and demonstration of some pro-

position.

14. A Postulate, or Petition, is something required to be done, which is so

easy and evident that no person will hesitate to allow it.

15. Method is the art of disposing a train of arguments in a proper orc'er,

to investigate the truth or falsity of a proposition, or to demonstrate it to

others when it has been found out. This is either Analytical or Syn-

thetical.

16. Analysis, or the Analytic method, is the art or mode of finding out the

truth of a proposition, by first supposing the thing to be done, and then

reasoning step by step, till we arrive at some known truth. This is also

called the Method ofInvention, or Resolution ; and is that which is com-
monly used in Algebra.

17. Synthesis, or the Synthetic Method, is the searching out truth, by first

laying down simple principles, and pursuing the consequences flowing

from them till we arrive at the conclusion. This is also called the Me-
thod of Composition ; and is that which is commonly used in Geometry.

18. The sign = (or two parallel lines), is the sign of equality; thus,

A= B, implies that the quantity denoted by A is equal to the quantity

denoted by B, and is read A equal to B.

1 9. To signify that A is greater than B, the expression A 7 B is i;sed. A rul

to signify that A is less than B, the expression A/^B is used.
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20. The sign of Addition is an erect cross ; thus

A and B, and is called A plus B.

21. Subtraction is denoted by a si ; as A— B, which
minus B ; A—B represents their ^^- •- or tlu- i;ii: uf A ; , _,

when a part equal to B has been nd|Bn a^v

In like manner, A—B+C, or A+C—B, i.^ - •-• •• --re lo

be added together, and that B is to be subtracted from their sum.

22. Afu/a/i/ieo/um is expressedbran oUique cro8<

apposition : thus, Ax B, A . B, or AB^ signifit

noted by A is to be multiplied by the 9Mptity denoted

pression AB shouJd not be employed wMBibere '•* a!.\

founding it with that of the line AB,
and B. The multiplication of numb4>r

appositicn.

23. When any quantities are encloeed in a par<

over them, they are considered as one qtt ^

symbols: thus, the expression AX(B+C—D), or Ax i re-

presenu the product of A by the quantity B+C—D. I
'

(A+ B)x(A—ij-f C). indicates the product of A+B I

A—B+C.
84. The Co^Jfieient of a qoantity b the number prefixed to it: thus, 2AB

signifies that the line AB is to be taken 2 times; |AB signifies the half

of the line AB.

t9. Divirion, or the ratio of one quantity to another, is nsttally denotod

placing one of the two quantities over the other, in the formof a f

tltua, — signifies the ratio or qix>tient arising from the dirision of the

quantity A by B. In fact, this b dirision bdicatcd.

C6. The Sifuare^ Cub*, Slc. of a quantity, are expressed by pUcing a small

figure at the right hand of the quantity : thus, the square of the line

AB b denoted by AB', the cube of the line .\B b designated by AB*

;

and soon.

f7. The Roots of quantities are expressed by means of the radical sign Vt
with the proper index annexed ; thus, the sqtiare root of 5 b indicated

v^5 ; -/( A X B) means the square root of the product of A ajid B, or the

mean proportiunal between them. The roots of quantities are some*
times exprosMd by n;eans of fractional indices : thus, the cube root uf

AxBxC may be expressed by VAxBxC, or (AxBxC)', and
so on.

18. Numbers in a parenthesb, such as (15. I.), refers back to the numbei
of the proposition and the Book in wnich it has been announced or de*

monstrated. The expression (15. 1.) denotes the fiftcenih proposition,

firs' book, and so on. In Uke manner, (3. Ax.) desi^ates the third

axiom; (2. Post.) the second postulate; (Def. 3.) the third definitiol^

and so on.

enoted by
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29. The word, therefore, or hence, frequently occurs. To express either of

these words, the sign .*. is generally used.

30. If the quotients of two pairs of numbers, or quantities, are equal, the

quantities are saifl to be proportional: thus, if :^ ~ f)
' ^^®^' A' »* fo B

asCtoTi. And the abhreviations of the proportion is, A : B : : C : D

;

it is sometimes written A : B=C : D.

DEFINITIONS.

I. "A Point \» that which has position, but not magnitude*." (See

Notes.) -

2* A line is length without breadth.

" CoaoLLARY. The extremities of a line are points ; and the intersections

" of one line with another are also points."

3. " If two lines are such that they cannot coincide in any two points, with-

" out coinciding altogether, each of them is called a straight line."

'* Cor. Hence two straight lines cannot inclose a space. Neither can two
" straight Unes have a common segment ; that is, they caimot coincide

" in part, without coinciding altogether."

4. A superficies is that which has only length and breadth.

• Cor. The extremities of a superficies are lines ; and the intersections of

" one superficies with another are also lines."

5. A plane superficies is that in which any two points being taken, the

straight line between them lies wholly in that superficies.

6. A plane rectilineal angle is the inclination of two straight lines to one

another, which meet together, but are not in the same straight line.

i
B

N. B. 'When several angles are at one point B, any one of them is ex-

pressed by three letters, of which the letter that is at the vertex of the an-

gle, that is, at the point in which the straight lines that contain the angle

meet one another, is put between the other two letters, and one of these

two is somewhere upon one of those straight lines, and the other upon the

other line : Thus the angle which is contained by the straight lines, A B
CB, is named the angle ABC, or CBA ; that which is containod by AB,

The definitions marked with inverted commas are different from those of Kuclid.
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' BD, is named the angle ABD, or DBA ; and thai \> mcu la tuniauit u vy
' BD, CB, is called the angle DBC, or CBD ; but, if there be only one an-

' gle at a point, it may be expressed by a letter placed at that point ; as the

' angle at £.'

7. When a straight line standing on another

straight line makes the adjacent angles equal

to one another, each of the angles is called

a right angle ; and the straight line wUch
stands on the other, is called a perpendicu-

lar to it.

8. An obtuse angle is that which is greater than a right angle.

9. An acute angle is that which is leas than a right angle.
/»

10. A figure is that which is enclosed by one or more botmdaries.—7^
word area denotss tkt qmoMtitf of apoet tomtauud M •itgwt, witAout amf
reference to the nahtn of tk$ hm or tmu wkiek hmmtiL

1 1. A circle is a plane figure contained b^ one line, which is caQed the

circtmirerence, and is such that sU straight lines drawn from a certain

point within the figure to the circumference, are equal to one anotbar

«
12. And this point is called the centre of the circle.

13. A diameter of a circle is a straight line drawn through the centre, and
terminated both waj's by the circumference.

14. A semicircle is the figure contained by a diameter and the part of the

circumference cut off by the diameter.
8
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15. Rectilineal figures are those which are contained by straight iinet*.

16. Trilateral figures, or triangles, by three straight linea.

17. Quadrilateral, by four straight lines.

1 8. Multilateral figures, or polygons, by more than four straight lines.

1 9. Of three sided figures, an equilateral triangle is that which has ihre*"

equal sides.

20. An isosceles triangle is that which has only two sides equz^l.

21. A scalene triangle is that which has three unequal sides.

22. A right angled triangle is that which has a right angle.

23. An obtuse angled triangle is that which has an obtuse angle.

24. An acute angled triangle is that which has three acute angles.

25 Of four sided figures, a square is that which has all its sides equal

and aU its angles right angles.

»
26. An oblong is that which has all its angles right angles, but has not all

its sides equal.

27. A rhombus is that which has all its sides equal, but its angles are not

right angles.
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28. A rhomboid is that which has its opposite sides equal to one another,

but all its sides are not equal, nor its angles right angles.

29. All other four sided figures besides these, are called trapeziums.

30. Parallel straight lines are such as are in the same plane, and- which
being produced ever so far both ways, do not meeL

POSTULATES.

1

.

Let it be granted that a str&ight line may be drawn from any one poiQt

to any other point

2. That a terminated etraight line may be produced to any length in' a

ttraight line.

3. And that a circle may be described from any centre, at any distance

from that centre.

AXIOMS.

1. Thinos which sre eqtial to the same thing are e<itial to one another.

2. If equab be added to equals, the wholes are e<inaL

8. If equab be taken from equab, the remainders sre equsL

4. If equals be added to unequsb, the wholes sre imequal.

5. If eqsals be taken from tmequab, the remainders are tmequsL

8. Things which are doubles of the ssme thing, sre equal to one snother.

7. Things which are halves of the aame thing, are eqtisl to one another.

8. Matrnitudes which coincide with one another, that is, which exactly

fil^the same space, are equal to one another.

9. The whole u greater than its part.

10. All right angles are equal to one another.

11.** Two straight lines which intersect one snother, cannot be both p*>
** rallel to the same straight line."

#
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PROPOSITION I. PROBLEM.

To describe an equilateral triangle upon a given finite straight line.

Let AB be the given straight line ; it is required to describe an equi-

lateral triangle upon it. •

From the centre A, at the dis-

tance AB, describe (3. Postulate)

the circle BCD, and from the cen-

tre B, at the distance BA, describe

the circle ACE ; and from the point

C, in which the circles cut one an-

other, draw the straight lines (1.

Post.) CA, CB to the points A, B
;

ABC is an equilateral triangle.

Because the point A is the cen-

tre of the circle BCD, AC is equal

(11. Definition) to AB ; and because the point B is the centre of the cir-

cle ACE, BC is equal to AB : But it has been proved that CA is equal

to AB ; therefore CA, CB are each of them equal to AB ; now things

which are equal to the same are equal to one another, (L Axiom) ; there-

fore CA is equal to CB ; wherefore CA, AB, CB are equal to one another
;

and the triangle ABC is therefore equilateral, and it is described upon the

given straight line AB.

PROP. II. PROB.

From a given point to draw a straight line equal to a given straight line.

Let A be the given point, and BC the given straight line ; it is required

to draw, from the point A, a straight line equal to BC.
From the point A to B draw (1. Post.)

ths straight line AB ; and upon it describe

(1. 1.) the equilateral triangle DAB, and
produce (2. Post.) the straight lines DA,
BD, to E and F ; from the centre B, at the

distance BC, describe (3. Post.) the circle

CGH, and from the centre D, at the dis-

tance DG, describe the circle GKL, AL is

equal to BC.
Because the point B is the centre of the

circle CGH, BC is equal (11. Def.) to BG

;

and because D is the centre of the circle

GKL, DL is equal to DG, and DA, DB,
parts of them, are equal ; therefore the re-

mainder AL is equal to the remainder (3.
Ax.) BG: But it has been shewn that BC is equal to BG ; wherefore
AL and BC are each of them equal to BG ; and things that are equal
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to the same are equal to one another; therefore the - le AL la

equal to BC. Wherefore, from the given point A, a at: AL has

been drawn equal to the given straight line BC.

PROP. III. PROB.

From the greater of two given straight lines to cut e^ m peart e^at to the

less.

Let AB and C be the two given straight

lines, whereof AB is the greater. It is

required to cut off from AB, the greater,

a part equal to C, the lees.

From the point A draw (2. 1.) the

straight line AD equal to C ; and from
the centre A, and at the distance AD,
describe (3. Post.) the circle DEF; and
because A is the centre of the circle

DEF, AE is equal to AD; but the

straight line C is likewise equal to AD ;

whence AE and C are each of them equal U> AD ; wherefore the straight

line AE is equal to (1. Ax.) C, and from AB the greater of two straight

lines, a part AE has been cut off equal to C the less.

PROP. IV. THEOREM.

If two triamgUs koM two nitsoftXt onseqmml to twsidottftJmolksrtOmek
to each ; and hoot KUwiM A» amfles eomtaimed by tkoso tidu ofual fe

one another^ t)mr bases, or third aides, shatt bo septal t tmi tk$ areas of
the triangles skaU be equal ; and their otMtr anglas AaU ha tftiat, each to

each, pis. those to which the ofwd sidos ara appas 'to.*

Let ABC, DEF be two triangles which hart the two sides AB, AC
equal to the two sides DE DP, each to each, Tis. AB to DE, and AC to

DP; and let the ancle

BAC be also equal to ue
angle EDF: then shall

Jie base BC be equal to

the base EF ; and the tri-

angle ABC to the triangle

DEF; and the other an-

gles, to which the equal

sides are opposite, shall

be equal, each to each, " O E
m. the angle ABC to the angle DEF, and the angle ACB to DFE.

For, if the triangle ABC be applied to the triangle DEF, so that the

point A may be on D, and the straight line AB upon DE ; the point B
shall coincide with the point E, because AB is equal to DE ; and AB

* T>M tkfM eoaeliuioM ia thia eaaneiaUoa an or* briefly •tfnmei bj rayiof, tMet tke
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coinciding with DE, AC shall coincide with DF, because the angle BAG
is equal to the angle EDF ; wherefore also the point C shall coincide with

Ihe point F, because AC is equal to DF : But the point B coincides with

the point E ; wherefore the base BC shall coincide with the base EF
cor. def. 3.), and shall be equal to it. Therefore also the whole triangle

ABC shall coincide with the whole triangle DEF, so that the spaces which

they contain or their areas are equal ; and the remaining angles of the

one shall coincide with the remaining angles of the other, and be equal to

them, viz. the angle ABC to the angle DEF, and the angle ACB to the

angle DFE. Therefore, if two triangles have two sides of the one equal

to two sides of the other, each to each, and have likewise the angles con-

tained by those sides equal to one jinother ; their bases shall be equal,

and their areas shall be equal, and their other angles, to which the equal

sides are opposite, shall be equal, each to each.

PROP. V. THEOIl.

The angles at the base of an Isosceles triangle are equal to one another ; and

if the equal sides be produced, the angles upon the other side of the base

shall be equal.

Let ABC be an isosceles triangle, of which the side AB is equal to AC,
and let the straight lines AB, AC be produced to D and E, the angle ABC
shall be equal to the angle ACB, and the angle CBD to the angle BCE.

In BD take any point F, and from AE the greater cut off AG equal

(3. 1.) to AF, the less, and join FC, GB.
Because AFis equal to AG, and AB to AC, the twosides FA, A Care equal

to the two GA, AB, each to each ; and they contain the angle FAG com-

mon to the two triangles, AFC, AGB
;

therefore the base FC is equal (4. 1.) to

the base GB, and the triangle AFC to

the triangle AGB; and the remaining

angles of the one are equal (4. L) to

the remaining angles of the other, each to

each, to which the equal sides are oppo-

site, viz. the angle ACF to the angle

ABG, and the angle AFC to the angle

AGB: And because the whole AF is

equal to the whole AG, and the part AB
to the part AC ; the remainder BF shall

be equal (3. Ax.) to the remainder CG

;

and FC was proved to be equal to GB, ^' \E
therefore the two sides BF, FC are equal to the two CG, GB, each to

each ; but the angle BFC is equal to the angle CGB ; wherefore the tri-

angles BFC, CGB are equal (4. 1.), and their remaining angles are equal-

to which the equal sides are opposite ; therefore the angle FBC is equal

to the angle GCB, and the angle BCF to the angle CBG. Now, since

it hc^s been demonstrated, that the whole angle ABG is equal to the whole
ACF, and the part CBG to the part BCF, the remaining angle ABC is

therefore equal to the remaining angle ACB, which are the angles at the
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biute of the triangle ABC : And it has also been proved that the angle

FBC is equal to the angle GCB, which are the angles upon the other side

of the base.

Corollary. Hence every equilateral triangle is also equiangular

i

PROP. VI. THEOR. J

Jf two angles of a tnangle be equal to one another, the sides tchieJ. ..-
^

or are opposite to t/iem, are also f^ual to one another. J

I^t ABC be a triangle having the angle ABC equal to the aacie ACB

;

]

the side AB is also equal to the side AC.
^

For, if AB be not equal to AC, one of them is

greater than the other : Let AB be the greater,

and from it cut (3. 1.) off DB equai to AC the

less, and join DC ; therefore, because in the tri- J>/ \ ~j

angles DBC, ACB. DB is equal to AC, and HC
common to both, the two sides DB, BC are equal

to the two AC, CB, each to each ; but the angle

DBC is also equal to the angle ACB ; therefore

the base DC is equal to the base AB, and the area

of the triangle DBC is eoual to that of the triangle

(4. 1.) ACB, the less to tiie greater ; which is ab-

surd. Therefore, AB is not unequal to AC, that

is, it b equal to it

Cor. Hence every equiangular triangle is also equilateral.

PROP. yil. THEOR.

Upon tk* §am» hate, and on tho tame tide ofit, there eanttot be two triaHgUt^

that have their tides tohith are terminated in one extremity of the bate

equal to one another, and Itkevite thote lohich are terminated in the other

extremity, equal to one another.

Let there be two triangles ACB, ADB, upon the same base AB, and
upon the same side of it, which have their aides CA, DA, temiinat«d in A
equal to one another ; then their sides CB, DB, terminated in B. cannot

be equal to one another.

Join CD, and if possible let CB be ^
equal to DB ; then, in the case in which ^
the vertex of e^ch of the triangles is with-

out the other triangle, because AC is

equal to AD, the angle ACD is equal (5.

1.) to the angle ADC : But the sn^a
ACD is greater than the an^e BCD

;

therefore the ansle ADC is mater also

than BCD ; much more then u the ancla

BDC greater than the angle BCD. Again,

becaase CB is equal to DB, the angia

BDC is equal (5. 1.) to the angle BCD ; A^
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but it has been demonstrated to be greater than It ; which is impossV

ble.

But if one of the vertices, as D,

be within the other triangle ACB ;

produce AC, AD to E, F ; therefore,

because AC is equal to AD in the

triangle ACD, the angles ECD, FDC
upon the other side of the base CD
are equal (5. 1.) to one another, but

the angle ECD is greater than the

angle BCD ; wherefore the angle

FDC is likewise greater than BCD
;

much more then is the angle BDC greater than the angle BCD. Again,

because CB is equal to DB, the angle BDC is equal (5. 1.) to the angle

BCD; but BDC has been proved to be greater than the same BCD;
which is impossible. The case in which the vertex of one triangle is

upon a side of the other, needs no demonstration.

Therefore, upon the same base, and on the same side of it, there cannot

be two triangles that have their sides which are terminated in one extrem

ity of the base equal to one another, and likewise those which are termina

ted in the other extremity equal to one another.

PROP. VIII. THEOR.

If two triangles have two sides of the one equal to two sides of the othet

each to each, and have likewise their bases equal ; the angle which is contain

ed by the two sides of the one shall be equal to the angle contained by the ttvo

sides of the other.

Let ABC, DEF be two triangles having the two sides AB, AC, equal

to the two sides DE, DF, each to each, viz. AB to DE, and AC to DP

;

E P
and also the base BC equal to the base EF. The angle BAC is equal tc

•he angle EDF.
For, if the triangle ABC be applied to the triangle DEF, so that the

point B be on E, and the straight line BC upon EF ; the point C shall also

coincide with the point F, because BC is equal to EF : therefore BC coin-
ciding with EF, BA and AC shall coincide with ED and DF ; for, if

BA and CA do not coincide with ED and FD, but have a different situa-
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lion, as EG and FG ; then, upon the same base E^ , .

tide of it, there can be two triangles EI'F, EGF.thai hav'

•xe terminated in one extremity of the basr -
'
•

wise their sides terminated in the other <

(7. 1.); therefore, if the base BC co'. .:a uh- ;

BA, AC cannot but coincide with th< 1 ), DF ; v
the angle BAG coincides with the angle EDF, and is equal

PROP. IX. PROB.

itne

To bisect a given rectilineal angle, that is, to divide it into tve t^al amgtu.

Let BAG be the given rectilineal angle, it is required to bisect ii.

Take any point D in AB, and from AG cut

(3. I.) oflTAE equal to AD
;
join DE, and upon

it describe (1. 1.) an equilateral triangle DEF

;

then join AF ; the straight line AF bisects

the angle BAG.
Because AD is equal to AE, and AF is com*

roon to tlie two triangles DAF, EAF ; the two
sides DA, AF, are equal to the two sides EA,
AF, each to each ; but the base DF is also

equal to the base EF ; therefore the angle

DAF is equal (8.1.) to the ancle EAF: where-

fore the given rectilineal an^ BAG is biMci>

•d by the straight line AF.

SCHOLIUM.

By the smm ooMtroctioa, each of iho halvM BAF, CAP, may be div#>

ded into two equal jMrta ; and thw, by snecenive subdivisions, a given an-
gle may be divided into four equal parts, into ei|^ into sixteen, and so oa.

PROP. X. PROB.

To bisect, a gtven finite straight line, thai is, ts dknde it into two e^alparts.

Let AB be the given straight line ; it is required to divide it into two equal

puts.

Describe (1. I.) upon it an equilateral triangle ABC, and bisect (9. l^
the angle ACB by the straight line CD. AB is

cut into two equal parts in the point D.

Because AG is equal to GB, and CD conunoa
to the two triangles ACD, BCD : the two sides

AC. CD, are equal to the two BC, CD, each to

each ; but the angle AGD is also equal to the an*

gle BCD ; therefore the base AD is equal to the

base (4. 1.) DB, and the straight line AB is divi-

ded into two equal parts in the point D.

•4
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PROP. XI. PROB.

To draw a straight line at right angles to a given straight line, from a given

point in that line.

Let AI? be a given straight line, and C a point given in it ; it is reqiu-

led to draw a straight line from the point C at right angles to AB.

Take any point D in AC, and (3. L) make CE equal to CD, and upon

DE describe (1. L) the equilateral p
triangle DFE, and join FC; the

straight line FC, drawn from the giv-

en point C, is at right angles to the

given straight line AB.
Because DC is equal to CE, and

FC common to the two triangles

DCF, EOF, the two sides DC, CF
are equal to the two EC, CF, each A JJ C E B
to each ; but the base DF is also equal to the base EF ; therefore the

angle DCF is equal (8. 1.) to the angle ECF ; and they are adjacent an-

gles. But, when the adjacent angles which one straight line makes with

another straight line are equal to one another, each of them is called a

right (7. def.) angle ; therefore each of the angles DCF, ECF, is a right

angle. Wherefore, from the given point C, in the given straight line AB,
FC has been drawn at right angles to AB.

PROP. Xn. PROB.

To draw a straio-ht line perpendicular to a given straight line, ofan unlimited

length,from a given point without it.

Let AB be a given straight line, which may be produced to any length

both ways, and let €) be a point without it. It is required to draw a straight

line perpendicular to AB from the

point C.

Take any point D upon the other

side of AB,and from the centre C, at

the distance CD, describe (3. Post.)

the circle EGF meeting AB in F, G :

and bisect (10. 1.) FG in H, and join

CF, CH, CG ; the straight line CH,
drawn from the given point C, is per-

pendicular to the given straight line AB.
Because FH is equal to HG, and HC common to the two triangles FHC,

GHC, the two sides FH, HC are equal to the two GH, HC, each to each
,

but the base CF is also equal (11. Def. 1.) to the base CG ; therefore the

angle CHF is equal (8. 1.) to the angle CHG ; and they are adjacent an-

gles ; now when a straight line standing on a straight line makes the ad-

jacent angles equal to one another, each of them is a right angle, and
tho straight line which stands upon the other is called a perpendicular to

It ; therefore from the given point C a perpendicular CH has been drawn
to the given straight line AB.
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PROP. XIII. THEOR.

The angles which one straight line makes tri
'

"

either two right angles, or are together

Let the straight line AB make with CD, upon or

CBA,ABD ; these are either two right angles, or arc .. ^

right angles.

For, if the angle CBA be equal to ABD. each of thciu ^ ^.^

tDef. 7.) ; bitt, if not, from the point B draw BE at right angles (1 1. H)

E A

D B O D B
to CD ; therefore the angles CBE, EBD are two right angles

angle CBE is eooal to the two angles CBA, ABE together ;

(^e EBD to eacn of these equals, and the two angles CBE, 1

equal (2. Ax.) to the three CBA, ABE, EBD. Anin, the '^.

equal to the two angles DBE, EBA ; add to each of these e<)aal» the angle

ABC ; then will the two angles DBA, ABC be equal to the three angl<>8

DBE, EBA, ABC ; but the eagles CBE, EBD hare been demonstrated

to be equal to the same three anglee ; and things that are eoual to the aame
are equal (1. Ax.) to one another; therefore the an^es CBE, EBD are

equal to the angles DBA, ABC ; but CBE, EBD, are two right angles ;

therefore DBA, ABC ; are together equal to two right anglee.

Coa. The sum of all the angles, formed on the same side of a straight

lino DC, is equal to two right angles ; because their sum is eqtul to that

of the two adjacent angles DBA, ABC.

PROP. XIV. THEOR.

If, at a point ta a straight line, two other straight limes, upon the opposil*

sides of it, make the adjacent angles together equal to two right angles,

these two straight lines are in one and the same straight line.

At the point B in the straight line AB,
let the two straight lines BC, BD upon
the opposite sides of A B, make the adja-

rent angles ABC, ABD equal togethe*

to two right angles. BD is in the same
straight line with CB.

For if BD be not in the same strai|^

line with CB, let BE be in the same
straight lino with it ; therefore, becanae

he straight line AB makes angles with

the straight line CBE, upon one side of
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it, t'ne angles ABC, ABE are together equal (13. 1.) to two right angles ;

but the angles ABC, ABD are likewise together equal to two right angles :

therefore the angles CBA, ABE are equal to the angles CBA, ABD :

Take away the common angle ABC, and the remaining angle ABE is equal

(3. Ax.) to the remaining angle ABD, the less to the greater, which is im-

possible ; therefore BE is not in the same straight line with BC. And ia

like manner, it may be demonstrated, that no other can be in the same

straight line with it but BD, which therefore is in the same straight line

withCB. •

PROP. XV. TH^OR.

If two straight lines cut one another, the vertical, or opposite angles are equal.

Let the two straight lines AB, CD, cut one another in the point E : the

angle AEC shall be equal to the- angle DEB, and CEB to AED.
For the angles CE A, AED, which the straight line AE makes with the

straight line CD, are together equal (13. 1.) to two right angles : and the

angles AED, DEB, which the

straight line DE makes with the

straight line AB, are also together

equal (13. 1.) to two right angles ;

therefore the two angles CEA,
AED are equal to the two AED,
DEB. Take away the common
angle AED, and the remaining

angle CEA is equal (3. Ax.) to the

remaining angle DEB. In the

same manner it may be demonstrated that the angles CEB, AED are

equal.

Cor. 1. From this it is manifest, that if two straight lines cut one an-

other, the angles which they make at the point of their intersection, are

together equal to four right angles.

Cor. 2. And hence, all the angles made by any number of straight lines

meeting in one point, are together equal to four right angles.

PROP. XVI. THEOR.

If one side of a triangle he produced, the exterior angle is greater than

, either of the interior, and opposite angles.

Let ABC be a triangle, and let its side BC be produced to D, the ex-

terior angle ACD is greater than either of the interior opposite angles

CBA, BAC.
Bisect (10. 1.) AC in E, join BE and produce it to F, and make Et

equal to BE
;
join also FC, and produce AC to G.

Because AE is equal to EC, and BE to EF ; AE, EB are equal to

CE, EF, each to each; and the angle AEB is equal (15. 1.) to the

angle CEF, because they are vertical angles ; therefore the base AB



OF GEOMETRY. BOOK I. 21

is equal (4. 1 ) to the base CF, and
the triangle AEB to the triangle

CEF, and the remaining angles to

ihe remaining angles each to each,

lo which the equal sides are oppo-

site ; wherefore the angle BAE is

equal to the angle ECF ; but the

angle ECD is greater than the an-

gle ECF ; therefore the angle ECD,
that is ACD, is greater thaji BAE :

In the same manner, if the side BC
be bisected, it may be demonstrated

(hat the angle BCG, that is (15. 1.),

the angle ACD, is greater than tha

angle ABC.

PROP. XVII. THEOR.

An^ two angles of a triangU or* together lost than two right angles

Let ABC be any triangle ; any
two of iu angle* togetlier are less

than two right angles.

Produce BC to D; and because
ACD is the exterior angle of the tri-

angle ABC, ACD is greater (16. 1.)

than the interior and oppoaite angle

ABC ; to each of these add the angle

ACB ; therefore Uic angles ACD,
ACB are greater than the angles

ABC, ACB : but ACD, ACB are to-

gather equal (13. 1.) to two right an-

gles : therefore the angles ABC, BCA are less than two nght angles. In
like manner, it may be demonstrated, that BAC, ACB as abo CAB, ABC,
are less than two right angles.

PROP. XVIH. THEOR.

The greater side of every triangle has the greater angle opposite to it.

I^t ABC be a triangle of which the

side AC is greater than the side Al) ; the

angle ABC is also greater than the angle

BCA.
From AC, which is greater than AB,

cut off (3. 1.) AD equal to .\B, and join

BD : and because ADB is the exterior

angle of the triangle BDC, it is greater

(16. 1.) than the interior and opposite
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angle DCB ; but ADB is equal (5. 1.) to ABD, because the side AB is

equal to the side AD ; therefore the angle ABD is likewise greater than

the angle ACB ; wherefore much more is the angle ABC greater than

ACB

PROP. XIX. THEOR.

The greater angle of every triangle is subtended hy the greater side, or has

the greater side opposite to it.

Let ABC be a triangle, of which the angle ABC is greater than the

angle BCA ; the side AC is likewise greater than the side AB.
For, if it be not greater, AC must either

be equal to AB, or less than it; it is not

equal, because then the angle ABC would

be equal (5. 1.) to the angle ACB ; but it is

not ; therefore AC is not equal to AB ; nei-

ther is it less ; because then the angle ABC
would be less (18. l.)than the angle ACB

;

but it is not; therefore the side AC is not "n
less than AB ; and it has been shewn that

it is not equal to AB ; therefore AC is greater than AB.

PROP. XX. THEOR.

Any two sides of a triangle are together greater than the third side.

Let ABC be a triangle ; any two sides of it together arc greater than

the third side, viz. the sides BA, AC greater than the side BC ; and AB,
BC greater than AC ; and BC, CA greater than AB.

Produce BA to the point D, and make _~

(3. 1.) AD equal to AC ; and join DC. *^

Because DA is equal to AC, the an-

gle ADC is likewise equal (5. 1.) to

ACD ; but the angle BCD is greater

than the angle ACD ; therefore the an-

gle BCD is greater than the angle

ADC ; and because the angle BCD of

the triangle DCB is greater than its an- B * O
gle BDC, and that the greater (19. 1.) side is opposite to the greater an-

gle ; therefore the side DB is greater than the side BC ; but DB is equal

to BA and AC together; therefore BA and AC together are greater than

BC. In the same manner it may be demonstrated, that the sides AB,
BC are greater than CA, and BC, CA greater than AB.

SCHOLIUM.

This may be demonstrated without producing any of the sides : thus,

'he line BC, for example, is the shortest distance from B to C ; therefore

BC is less than BA+ AC or BA+AOBC.

A
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PROP. XXI. THEOR.

If from the ends of one side of a triangle, there be drawn tico straight

lines to a point within the triangle, thfsc ttco lines shall be less than the

other tvDO sides of the triangle, but shall funtain a greaUr amgle.

Let the two straight lines BD, CD be drawn from B, C s ol

tlie side BC of the triangle ABC, to the point D within it
;

i DC
are less than the other two sides BA, AC of the triangle, but contajn aj»

angle BDC greater than the angle BAC.
Produce BD to E ; and because two sides of a triangle (20. 1.) tM

greater than the third side, the two sides BA,
AE of the triangle ABE are greater than BE.
To each of these add EC ; therefore the

•tides BA, AC are greater than BE. EC :

Again, because the two sides CE, ED, of

the triangle CED are greater than CD, if

DB be added to each, the sides CE, EB,
will be greater than CD, DB ; but it has
been shewn that BA, AC are greater than

BE, EC ; much more then are BA, AC greats

er than BD, DC.
Again, because the exterior angle of a

tri&ngle (16. 1.) is greater than the interior and opposite angle, the exte-

rior angle BDC of the triangle CDE is greater than CED ; for llie mom
reason, the exterior angle CEB of the triangle ABE is greater than BAC

;

and it ha« been demoostrated that the angle BDC is greater than tba

angle CEB ; mneh mors then is the angle BDC greater than the aa^
BAC.

PROP. XXII. PROB.

To eoHslntet a triangle of wkiek tk* sidt* shall ht tqual to tkroo gtotm

straight lines ; but any two wkaUvor of tksss Ums4 mm*l ho grtmtsr tham

the third (20. 1.).

Let A, B, C be the three giren

straight lines, of which any two
whatever are greater than the

third, viz. A and B greater than

C ; A and C greater than B ; and

B and C than A. It is required

to make a triangle of which the

sides shall be equal to A, B, C,

each to each.

Take a straight line DE, ter-

minated at the point D, but un-

limited towards E, and make
(3. h.) DF equal to A, FG to B,

and GH eqiul to C ; and from
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the centre F, at the distance FD, describe (3. Post.) the circle DKL
,

and from the centre G, al the distance GH, describe (3. Post.) another

circle HLK ; and join KF, KG ; the triangle KFG has its sides equal to

the three straight lines, A, B, C.

Because the point F is the centre of the circle DKL, FD is equal (11.

Def.) to FK ; but FD is equal to the straight line A ; therefore FK is

equal to A : Again, because G is the centre of the circle LKH, GH is

equal (11. Def.) to GK; but GH is equal to C; therefore, also, GK is

equal to C ; and FG is equal to B ; therefore the three straight lines KF,
FG, GK, are equal to the three A, B, C : And therefore the triangle

KFG has its three sides KF, FG, GK equal to the three given straight

lines, A, B C,

SCHOLIUM.

If one of the sides were greater than the sum of the other two, the arcs

would not intersect each other: but the solution will always be possible,

when the sum of two sides, any how taken (20. 1.) is greater than the

third.

PROP. XXIII. PROB.

'At a given point in a given straight line, to make a rectilineal angle equal

to a given rectilineal angle.

Let AB be the given straight line, and A the given point in it, and DOE
the given rectilineal angle ; it is required to make an angle at the given

point A in the given straight line

AB, that shall be equal to the

given rectilineal angle DCE.
Take in CD, CE any points D,

E, and join DE ; and make (22.

1.) the triangle AF©, the sides

of which shall be equal to the

three straight lines, CD, DE, CE,
so that CD be equal to AF, CE to

AG, and DE to FG ; and because

DC, CE are equal to FA, AG,
each to each, and the base DE to

the base FG ; the angle DCE is

equal (8. 1.) to the angle FAG.
Therefore, at the given point A in the given straight line AB, the angle

FAG is made equal to the given rectilineal angle DCE.

PROP. XXIV. THEOR.

IJ two triangles have two sides of the one equal to two sides of the other, each

to each, but the angle contained by the two sides of the one greater than

the angle contained by the two sides of the other ; the base of that which

has the greater angle shall be greater than the base of the other.

Let ABC, DEF be two triangles which have the two sides AB', AC
equal to the two DE, DF each to each, viz. AB equal to DE, and AC to
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DF; but the angle BAG greater than the angle EDF; the base BC is

also ^eaier than the base EF.
01 the two sides DE. DF, let DE be \'

the other, and at the point D, in the at r

angle EDG equal to the angle BAG: and make DG equal (3^ J.) to AC
or DF, and join EG, GF.

Because AB is equal to DE, and AC lo DG, the two sides BA, AC are
equal to the two ED, DG, each to each, and the angle BAG is equal to

the angle EDG, therefore

the base BC is equal (4.1.) A i;>
to the base EG ; and be-
cause DG is equal to DF,
the angle DFG is equal

(5. 1 .) to the angle DGF

;

but the angle DGF is

greater than the ang^e
EOF ; therefore the angle
DFG is greater than EGF;
and rauchtnoreis the angle
£FG greater liian the
angle EGF ; and because
the angle EFG of the trian^e EFG is gt—ku thn its angle EGF, and
because the greater (19. l.)«de is opposite to tho greater angle, the md»
EG is greater than the aide EF ; but EG ia equal to BC ; and

*

alM BC ia greater than EF.

PROP. XXV. THEOR.

Iftteo triangUi kmtt two sides of the <ma $fmml fa Use ridusftke other, e^th

to each, hmt the has* of the one ^ater thmm Iks kaS9 of the other : the angle

comtained by the tides of thai vhtch has the greaier ioJv, shall be greater

than the angle contained by the sides of the other.

Let ABC, DEF be two trianglea which hare the two sidea, AB, AC,
equal to the two aidea DE, DF, each to each, rix. AB equal to DE, and
AC to DF : but let the base CB be greater than the baae EF, the angio

BAG is likewiae greater than the an^e EDF*
For, if it be not greater, it muat either be eqoal to it, or less ; bnt tho

angle B.\C is not equal to the aiujle

EDF, because then the base BC
would be equal (4. 1 .) to EF ; bat it is

not ; therefore tho angle B.\C is not

equal to the angle EDF ; neither is

it less ; because then the base BC
would be less (34. 1.) than the bas.

EF ; but it is not ; therefore the an-

gle BAG is not less than the angle

EDF: and it was shevm that it is

nor equal to it : therefore the angle

BAG is greater than the angle EDF.
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PROP. XXVI. TH11.0R.

}f two triangles have two angles of the one equal to two angles of the other,

each to each ; and one side equal to one side, viz. either the sides adjacent

to the equal angles, or the sides opposite to the equal angles in each; then

shall the other side be equal, each to each ; and also the third angle of the

one to the third angle of the other.

Let ABC, DEF be two trian-

gles which have the angles

ABC, BCA equal to the angles

DEF, EFD, viz. ABC to DEF,
and BCA to EFD, also one side

equal to one side ; and first, let

those sides be equal which are

adjacent to the angles that are

equal in the two triangles, viz.

BC to EF ; the other sides

shall be equal, each to each, viz.
r^ -ni —

"C"
AB to DE, and AC to DF ; and B V. JI4 *
the third angle BAC to the third angle EDF.

For, if AB be not equal to DE, one of them must be the greater. Let

AB be the greater of the two, and make BG equal to DE, and join GC

;

therefore, because BG is equal to DE, and BC to EF, the two sides GB,
BC are equal to the two, DE, EF, each to each ; and the angle GBC is

equal to the angle DEF; therefore the base GC is equal (4. \.) to the

base DF, and the triangle GBC to the triangle DEF, and the other angles

to the other angles, each to each, to which the equal sides are opposite
;

therefore the angle GCB is equal to the angle DFE, but DFE is, by' the

hypothesis, equal to the angle BCA ; wherefore also the angle BCG is

equal to the angle BCA, the less to the greater, which is impossible
;

therefore AB is not unequal to DE, that is, it is equal to it ; and BC is

equal to EF ; therefore the two AB, BC are equal to the two DE, EF,
each to each ; and the angle ABC is equal to the angle DEF ; therefore

the base AC is equal (4. L) to the base DF, and the angle BAC to the

angle EDF.
Next, let the sides which are

opposite to equal angles in each
triangle be equal to one another,

viz. AB to DE ; likewise in this

case, the other sides shall be

equal, AC to DF, and BC to EF ;

and also the third angle BAC to

the third EDF.
For, if BC be not equal to EF,

let BC be the greater of them,

and make BH equal to EF, and
ioin AH ; and because BH is

equal to EF, and AB to DE ; the two AB, BH are equal to the two
DE, EF each to each ; and they contain equal angles ; therefore (4. 1 )
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the base AH is equal to the base DF, anil " ^.

gle DEF, and the other angles are equal, • ,:il

sides are opposite ; therefore the angle BI 1);

but EFD is equal to the angle BCA ; then: uil

to the angle BCA, that is, the exterior ani;ii BHA < is

equal to its interior and opposite angle BCA, \\hich 1- ^ ^ i.);

wherefore BC is not unequal to £F, that is, it is equal to it; and AB is

equal to DE ; therefore the two, AB, BC are equal to tho^wo DE, EF, each
to each ; and they contain equal angles ; wherefore Sybase AC is equal

to the base DF, and the third angle BAC to the third angle EDF.

PROP. XXVII. TIIEOR.

]J a straight line falling upon two other straight lines makes tkt nl' >r

angles equal to one another, these two straight lines are parall

:

Let the straight line 0F, which falls upon the two straight lines AB,.
CD make the dtemate angles AEF, EFD equal to one another ; ^ rt .^

parallel to CD.
For, if it be not parallel, AB and CD being produced shall nieei n ^

towards B, D, or towards A, C ; let them be produced and meet towat

B, D in the point G ; therefore GEF ia a triangle, and its exterior angio

AE(* is greater (16- 1.) than the interior and opposite angle EFG ; but it

is also equal to it, which is im*

possible : therefore, AB and CD
bein^ produced, do not meet to-

wards B, D. In like manner it

may be demonstrated that they

do not meet towards A, C ; but

those straight lines which meet
neither way, though produced
ever so far, are parallel (30. Def.)

to one another. AB therefore is parallel to CD.

PROP. XXVIII. THEOR.

If a straight line falling upon two ether straight lines mahe* the ewterier am
gle equal to the interior and opposite upon the same side of the line ; or

mahee the interior angles upon the same side together equal to two right

anglee ; the two straight lines are parallel to one another.

Lot the straight line EF, which
falls upon the two straight lines AB,
CD, make the exterior angle EGB
equal to GHD, the interior and oppo-
site angle upon the same side ; or let it

make the interior angles on the same
side BGH, CHI) together equal to two
right angles ; AB isi parallel to CD.

Because tlie angle EGB is eqtial to

the angle GIID, and also (15. 1.) to the

^
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angle AGH, the angle AGH is equal to the angle GHl) ; and they are th -

alternate angles ; therefore AB is parallel (27. 1.) to CD. Again, because

the angles BGH,GHD are equal (hyp. )totworight angles, and AGH.BGH,
are also equal (13. 1.) to two right angles, the angles AGH, BGH are equal

to the angles BGH, GHD : Take away the common angle BGH ; therefore

the remaining angle AGH is equal to the remaining angle GHD ; and they

are alternate angles ; therefore AB is parallel to CD.
CoR. Hence, when two straight lines are perpendicular to a third line,

they will be parallel to each other.

PROP. XXIX. THEOR.

If a straight line fall upon two parallel straight lines, it makes the alternate

angles equal to one another ; and the exterior angle equal to the interior

and opposite upon the same side ; and likewise the two interior angles upon

the same side together equal to two right angled.

Let the straight line EF fall upon the parallel straight lines AB, CD ;

the' alternate angles AGH, GHD are equal to one ^.nother ; and the exte-

rior angle EGB is equal to the interior and opposite, upon the same side,

GHD ; and the two interior angles BGH, GHD upon the same side are

together equal to two right angles.

For if AGH be not equal to GHD, let KG be drawn making the angle

KGH equal to GHD, and produce KG to L ,• then KL will be parallel to

CD (27. 1
.) ; but AB is also paral-

lel to CD ; therefore two straight

lines are drawn through the same
point G, parallel to CD, and yet

not coinciding with one another,

which is impossible (11. Ax.) The
angles AGH, GHD therefore are

not unequal, that is, they are equal

to one another. Now, the angle

EGB is equal to AGH (15. 1.) ;

and AGH is proved to be equal

to GHD; therefore EGB is like-

wise equal to GHD ; add to each of these the angle BGH ; therefore the

angles EGB, BGH are equal to the angles BGH, GHD ; but EGB, BGH
are equal (13. 1.) to two right angles; therefore also BGH, GHD are

equal to two right angles.

CoR. 1 . If two lines KL and CD make, with EF, the two angles KGH,
G HC together less than two right angles, KG and CH will meet on the side

of EF on which the two angles are that are less than two right angles.

For, if not, KL and CD are either parallel, or they meet on the other

side of EF ; but they are not parallel ; for the angles KGH, GHC would
then be equal to two right angles. Neither do they meet on the other

side of EF ; for the angles LGH, GHD would then be two angles of a

triangle, and less than two right angles ; but this is impossible ; for the

four angles KGH, HGL, CHG, GHD are together equal to four right

angles (13 1.) of which the two, KGH, CHG, are by supposition less than
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two right angles ; therefore the other two, HGBtGHD - — an

two right angles. Therefore, since KL and CD are not aci

they do not meet towards L and D, they must meet ii' pruaucoa towards

Kand C.

Cor. 2. If BGli is a right angle, GHD v

therefore every line perpendicular to one of t\\ . ,

to the other.

Cor. 3. Since AGE=BGH, and DHF=CHG; hence the four acute

angles BGH, AGE, GHC, DHF, are equal lo o 13

the case with the four obtuse angles EGB, A* : ' ' 1 1 . . < : .

:

ni;iy

bo also observed, that, in adding one of the acute angles to (me of the ob-

tuse, the sum will always be equal to two right angles.

SCHOLIUM.

The angles just spoken of, when compared with each other, assume

different lUimes. BGH, GHD, we have already named interior angles on

the same side ; AGH, GHC, have the same name ; AGH, GHD.are call<d

alternate interior angles, or simply alternate; so also, are BGH, GIK' :

and lastly, EGB, GHD, or EGA, GHC, are. called, respectively, the op-

posite exterior and inttrior angles ; and EGB» CHF, or AGE, DHF, the

nltemate exterior mn|^ea.

PROP. XXX. THEOR.

Straight lines which are paraUel to tht same straight line are paralUl to om
another.

Let AB, CD, be each of them parallel to EF ; AS is also parallel to

CD.
Let the straight line GHK cut AB, EP, CD ; and because GHK enli

the parallel straight lines AB, EF, the

angle AGH is equal (29. 1.) to the an*

gleGIIF. Anin, because the straight

line GK cuts the parallrj straight lines

EF, CD, the angle GHF U equal (29.

1.) to the angle GKD : and it wa«
shewn that the angle AGK is equal to

the angle GHF; therefore also AGK
is equal to GKD ; and they are alter-

nate angles ; therefore AB is parallel

(27. 1.) to CD.

PROP. XXXI. PROB.

To draw a straight line through a given point parallel to a gtven straight

line.

Let .\ be the given point, and BC the given straight line, it is required
to draw a straight line through the point A, parallel to the straight
BC.
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E FIn BC take any point D, and join

AD ; and at the point A, in the

straight line AD, make (23. 1.) the

angle DAE equal to the angle ADC ;

and produce the straight line EA to F. D J3 C
Because the straight line AD, which meets the two straight lines BC,

EF, makes the alternate angles EAD, ADC equal to one another, EF is

parallel (27. 1.) to BC. Therefore the straight line EAF is drawn
through the given point A parallel to the given straight line BC.

PROP. XXXII. THEOR.

If a side of any triangle be produced, the exterior angle is equal to the two

interior and opposite angles ; and the three interior angles of every triangle

are equal to two right angles.

Let ABC be a triangle, and let one of its sides BC be produced to D ;

the exterior angle ACD is equal to the two interior and opposite angles

CAB, ABC ; and the three interior angles of the triangle, viz. ABC, BCA,
CAB, are together equal to two right angles.

Through the point C draw
CE parallel (31. 1.) to the

straight line AB ;, and because

AB is parallel to CE, and AC
meets them, the alternate an-

gles BAC, ACE are equal (29.

1.) Again, because AB is pa-

rallel to CE, and BD falls upon
them, the exterior angle ECD is equal to the interior and opposite angle

ABC, but the angle ACE was shewn to be equal to the angle BAG
;

therefore the whole exterior angle ACD is equal to the two interior ami
opposite angles CAB, ABC ; to these angles add the angle ACB, and
the angles ACD, ACB are equal to the three angles CBA, BAC, ACB

;

but the angles ACD, ACB are equal (13. 1.) to two right angles ; there-

fore also the angles CB.\, BAC, ACB are equal to two right angles.

CoR. 1. All the interior angles of any rectilineal figure are equal to

twice as many right angles as the figure has sides, w'anting four right angles.

For any rectilineal figure ABCDE can be divided into as many trian-

gles as the figure has sides, by drawing straight lines from a point F
within%he figure to each of its angles. And, by the preceding proposition,

all the »^les of these triangles are equal

to twicers many right angles as there

au-e triangffis, that is, as there are sides

of the figure ; and the same angles are

equal to the'angles of the figure, together

with the angles at the point F, which
is the common vertex of the triangles

;

that is, (2 Cor. 15. 1.) together with four

right angles. Therefore, twice as many
right angles as the figure has sides, are
equal to all the angles of the figure, to-
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gsrther with four right angles that is, the angles of the figure are equaJ

to twice as many right angles as the figure has sides, wanting four.

Cor. 2. All the exterior angles of any rectilineal figure are together

equal to four right angles.

Because every interior angle

ABC, with its adjacent exterior

ABD, is equal (13. 1.) to two
right angles ; therefore all the

interior, together with all the

exterior angles of the figure,

are equal to twice as many
right angles as there are sidea

of the figure ; that is, by the

foregoing corollary, they are

equal to all the interior angles

of tlie figure, together with
four right angles ; therefore all

the exterior angles are equal to four right angles.

Cor. 3. Two angles of a triangle being gircn, or merely their sum, tha
third will be found by subtracting that sum from two right angles.

Cor. 4. If two angles of one triangle are respectively equal to two an-

gles of another, the third angles will also be equal, and the two triangles

will be mutually equiangular.

CoR. 5. In any triangle there can be but one right angle ; for if (here

were two, the third angle must be nothing. Still less can a triangle havs
more than one obtuse angle.

CoK. 6- In every right-angled triangle, the sum of the two acute an-

gles is equal to one right angle.

CoR. 7. Since every equilateral triangle (Cor. 5. 1.) is also equian-

^ gular, each of its angles will be equal to the third part of two right angles

;

* so that if the right angle is expressed by unity, the angle of an equilateral

triangle will be expressed by f of one right angle.

Cos. 8. The stmi of the angles in a quadrilateral is equal to two righ*

angles multiplied by 4— 2, which amounts to four right angles ; hence, if

all the angles of a quadrilateral are eiiual, each of them will be a right an-

gle ; a concltuion which sanctions tho Definitions 25 and 26. where the

four angles of a quadrilateral are said to be right, in the case of the rectan-

gle and the square.

Cor. 9. The sum of the angles of a pentagon is equal to two right an-

gles multiplied by 5— 2, which amounts to six right angles ; hence, when
a pentagon is equiangular, each angle is equal to the fifth part of six right

angles, or f of one right angle.

Cor. 10. The sum of the angles of a hexagon is equal to 2 X (6— 2),

or eight right angles ; hence, in the equiangular hexagon, each angle is

the sixth oart of eight right angles, or ^ of one right angle.

SCHOLIUM.
When (Cor. 1.) is applied to pdygons, which have re-entrant angles,

as ABC each re-entrant angle must be regarded as greater than two rigkl

angles.
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And, by joining BD, BE, BF, the

figure is divided into four triangles,

wliich contain eight right angles
;

that is, as many times two right an-

gles as there are units in the number
of sides diminished by two.

But to avoid all ambiguity, we shall

henceforth limit our reasoning to

polygons with salient angles, which
might otherwise be named convex

polygons. Every convex polygon is

such that a straight line, drawn at

pleasure, cannot meet the contour of

the polygon in more than two points.

PROP. XXXIII. THEOR.

The straight lines whichjoin the extremities of two equal and parallel straight

lines, towards the same parts, are also themselves equal and parallel.

Let AB, CD, be equal and parallel straight lines, and joined towards

the same parts by the straight lines AC, BD; AC, BD are also equal and

parallel.

Join BC ; and because AB is parallel

to CD, and BC meets them, the alternate

angles ABC, BCD are equal (29. 1.) ; and
because AB is equal to CD, and BC com-
mon to the two triangles ABC, DCB, the

two sides AB, BC are equal to the two
DC, CB ; and the angle ABC is equal to C 13

the angle BCD ; therefore the base AC is equal (4. 1.) to the base BD,
and the triangle ABC to the triangle BCD, and the other angles to the

other angles (4. 1.) each to each, to which the equal sides are opposite
;

therefore the angle ACB is equal to the angle CBD ; and because the

straight line BC meets the two straight lines AC, BD, and makes the al-

ternate angles ACB, CBD equal to one another, AC is parallel (27. 1.) to

BD ; and it was shewn to be equal to it.

CoR. 1. Hence, if two opposite sides of a quadrilateral are equal and

parallel, the remaining sides will also be equal and parallel, and the figure

will be a parallelogram.

Cor. 2. And every quadrilateral, whose opposite sides are equal, is a

parallelogram, or has its opposite sides parallel.

For, having drawn the diagonal BC ; then, the triangles ABC, CBD,
being mutually equilateral {hyp.), they are also mutually equiangular

(Th. 8.), or have their corresponding angles equal ; consequently, the op

posite sides are parallel ; namely, the side AB parallel to CD, and BD pa

railel to AC ; and, therefore, the figure is a parallelogram.

Cor. 3. Hence, also, if the opposite angles of a quadrilateral be equal

the opposite sides will likewise be equal and parallel.

For all the angles of the figure being equal to four right angles (Cor. 8
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Th. 32.), and the opposite angles being mutually eqira^fli^P|)air oi adja-

cent angles must be equal to two right angles ; therefore, the opposite sides

vaatt be equal and parallel.

PROP. XXXIV. THEOR.

The opposite sides and angles ofa parallelogram are i

tUe diagonal bisects it ; that ir, divides it into

N. B. A Panneloyram \» m fonr-Bidp<l fi^r«, of which the opposite tToM mn panllel ; and
the diameter ia a atraifht line joining two of its opposite anflea.

liCt ACDB be a parallelogram, of which BC is a diameter ; the oppo-

fite sides and angles ofthe figure are equal to one another ; and the diam-

eter BC bisects it. ^
Because AB is parallel to CD, and BC

meets them, the alternate angles ABC,
BCD are equal (29. 1.) to one another; and
because AC is parallel to BD. and BC meets

them, the alternate angles ACB, CBD are

equal (29. I .) to one another ; wherefore

the two triangles .\BC, CBD have two an-

gles ABC, BCA in one, equal to two angles

riCD, CBD in the other, each to each, and the side BC, which is adja-

cent V) these equal angles, comnKyi to the two triangles ; therefore their

ether sides are equal, each to each, and the third angle of the one to the

4iird angle of the other (26. 1.) ; vis. the side AB to the side CD, and
AC to BD, and the angle BAC equal to the anfle BDC. And because

ihe angle ABC is eqiuil to the angle BCD, and the an^e CBD to the

angle ACB, the whole angle ABD b equal to the whole ani^e ACD :

And the angle BAC has been shewn to be equal to the angle BDC : there*

fore the opposite sides and angles of a parallelogram are equal lo one an*

other; also, its diameter bisecu it; for AB being equal to CD, and BC
common, the two AB, BC are equal to the two DC, CB, each to each ;

npw the angle ABC is equal to the angle BCD; therefore the triangle

ABC is eqiul (4. 1.) to the triangle BCD, and the diameter BC divides

the parallelogram ACDB into two equal parts.

CoR. 1. Two parallel lines, inchtdcd between two other parallels, are

equal.

CoR. 2. Hence, two parallels are erery where equally distant

Cor. 3. Hence, also, the sum of any two adjacent angles of a paral

lelogram is equal to two right angles.

PROP. XXXV. THEOR.

ParaHelogrttms upon the samt base and between tha same parallels, are equa*

to one another.

(SEB THE 2d A.ND 3d riOURES.)

Let the parallelograms ABCD, EBCP be upon the same base BC, and
between the same parallela AF, BC ; the parallelogram ABCD is equal t«

the parallelogram EBCF.
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If the sides AD, DF of the parallelo-

grams ABCD, DBCF opposite to the base

BC be terminated in the same point D ;

it is plain that each of the parallelograms

is double (34. 1.) of the triangle BDC
;

and they are therefore equal to one an-

other.

But, if the sides AD, EF, opposite to the base BC of the parallelograms

ABCDjEBCF, be not terminated in the same point ; then, because ABCD
is a parallelogram, AD is equal (34. l,)to BC ; for the same reason EP
is equal to BC ; wherefore AD is equal (1. Ax.) to EF ; and DE is com-

mon ; therefore the whole, or the remainder, AE is equal (2. or 3. Ax.) to

the whole, or the remainder DF ; now AB is also equal to DC ;
therefore

the two EA, AB are equal to the two FD, DC, each to each ;
but the ex-

terior angle FDC is equal (29. 1.) to the interior EAB, wherefore the base

EB is equal to the base FC, and the triangle EAB (4. 1.) to the triangle

FDC. Take the triangle FDC from the trapezium ABCF, and from the

same trapezium take the triangle EAB ; the remainders will then be equal

(3. Ax.) that is, the parallelogramABCD is equal to the parallelogram EBCF.

PROP. XXXVI. THEOR.

Parallelograms upon equal bases, and between the same parallels, are equal to

one another.
*

Let ABCD, EFGH be parallelograms upon equal bases BC, FG, and

between the same parallels AH,
BG ; the parallelogram ABCD
is equal to EFGH.

Join BE, CH ; and because
BC is equal to FG, and FG to

(34. 1.) EH, BC is equal to EH
;

and they are parallels, and join-

ed towards the same parts by the

straight lines BE, CH : But
straight lines which join equal and parallel stmight lines towards the same
parts, are themselves equal and parallel (33. 1.) ; therefore EB, CH are

both equal and parallel, and EBCH is a parallelogram ; and it is equal

(35 I.) to ABCD, because it is upon the same base BC, and between the

same parallels BC, AH : For the hke reason, the parallelogram EFGH
i« equal to the same EBCH ; Therefore also the parallelogram ABCD i»

equal to EFGH.
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PROP. XXXVII. THEOR.

Trimt gles upon the same base, and bettoeen the same parallels, are equal to one
another.

Let the triangles ABC, DBG be upon the same b«M EC, and between
the same parallels, AD, BC : The
triangle ABC is equal to the trian-

gle UBC.
Produce AD both ways t4» the

-pMMB £, F, and through B draw (31.

1.) BE parallel to GA ; and through

G draw GP parallel to BD : There-
fore, each of the figures EBCA,
DBCF isa parallelogram ; and EBC

A

is equal (35. 1.) to DBCP, because they are upon the same base BC, and
between the same parallels BC, EP ; but the triangle ABC is the half of

the parallelogram EBCA, because the diameter AB bisects (34. 1.) it;

and the triangle DBC is the half of the parallelogram DBCF, becauM
the diameter DC bisects it ; and the halves of eqiMl things are equal (7.

Ax.) i therefore the triangle ABC is equal to the trfugle DBC.

PROP. XXXVIII. THEOR.

Triangles upon 0quat hosts, and between the seme peraUeUt art equal to erne

Let the triangles ABC, DEF be upon Mini bMee BC, EF, and belwram
thesaroeparallebBF.AD: Thetriaa«l«ABCte«qualtotlietii«Ml«DEP

Produce AD both way* to tbo pointa O, H, aad ifamogh B draw BG
parallel (31. I.) to CA, and ihraagfc F draw PH pumUal to ED : Then
each of the figtirea GBCA, ^ An
DEFH is a parallelogram; ^ -^ ^
and they are equal to (36. 1.)

one another, because they aid

upon equil bases BC, EF, and
between the same parallels

•BF, GH ; and the triangle

ABGisthehalf(34. l.)ofihe -, ^ p -,

pvallelogramGBCA.beeause '' ^ ^ '^

tbo diMBelor AB bieeeta it; mi the triangle DEF ia the half (34. I.) of

tho paraUelogram DEFU, beettttse the diameter DP biaeou it: But the

halvea of equal things are eqtial (7. Ax.) ; therefore the triangle A BC is

equal to the triangle DEF.

PROP. XXXIX. THEOR.

Equal triangles upon the same base, and upon tMe same side ofit, are beitaeen

the same paraUels.

Let the equal triangles ABC, DBC be upon the aame base BC, and uwm
tho Wime side of it ; they am between the same parallels.
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Join AD ; AD is parallel to BC ; for, if it is not, through the point A
draw (31. 1.) AE parallel to BC, and join EC : a • T)
The triangle ABC, is equal (37. 1.) to the tri-

angle EBC, because it is upon the same base

BC, and between the same parallels BC, AE :

But the triangle ABC is equal to the triangle

BDC ; therefore also the triangle BDC is equal

to the triangle EBC, the greater to the less,

which is impossible : Therefore AE is not par-

allel to BC. In the same manner, it may be

demonstrated that no other line but AD is parallel to BC ; AD is there-

fore parallel to it.

PROP. XL. THEOR.

Equal triangles on the same side of bases which are equal and in the same

straight line, are between the same parallels.

Let the equal triangles ABC, DEF be upon equal bases BC, EF, in

the same straight line BF, and to-

wards the same parts ; they are be-

tween the same parallels.

Join AD ; AD is parallel to BC
;

for, if it is not, through A draw (31.

1.) AG parallel to BF, and join GF.
The triangle ABC is equal (38. 1.)

to the triangle GEF, because they

are upon equal bases BC, EF, and
between the same parallels BF,
AG : But the triangle ABC is equal to the triangle DEF ; therefore also

the triangle DEF is equal to the triangle GEF, the greater to the less,

which is impossible ; therefore AG is not parallel to BF ; and in the same
manner it may be demonstrated that there is no other parallel to it but

AD ; AD is therefore parallel to BF.

PROP. XLL THEOR.

If a parallelogram and a triangle be upon the same base, and between the

same parallel ; the parallelogram is double of the triangle.

Let the parallelogram ABCD and the tri-

angle EBC be upon the same base BC and
between the same parallels BC, AE ; the

parallelogram ABCD is double of the trian-

gle EBC.
Join AC ; then the triangle ABC is equal

(37. 1.) to the triangle EBC, because they
^re upon the same base BC, and between the

same parallels BC, AE. But the parallelo-

gram ABCD is double (34. 1.) of the triangle

ABC, because the diameter AC divides it

into two equal parts ; wherefore ABCD is also double of the triangle EBC
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PROP. XLII. PROB.

i
37

To descnbe a parallelogram that shall be equal to a given triangle, and have

one of its angles equal to a given rectilineal angle.

Let ABC be the given triangle, and D the given rectilineal angle, li

is required to describe a parallelogram that shall be equal to the given tri-

angle ABC, and have one of its angles equal to D.

Bisect (10. 1.) BC in £, join AE, and at the point E in the straight line

EC make (23. 1.) the angle CEF equal to D ; and through A draw (31.

1.) AG parallel to BC, and through C draw CO (31. 1.) parallel to EF;
Therefore FECG is a parallelogram : a -p p
And because BE is equal to EC, the "^ ^ ^
triangle ABE is likewise equal f38.

1.) to the triangle AEC, since thejr

are upon equal bases BE, EC, and
between the same parallels BC, AG ;

therefore the triangle ABC is double

uf the triangle AEC. And the paral-

lelogram FECG is likewise double

(41. 1.) of the triangle AEC, because

it is upon the same base, and between
the same parallels : Therefore the parallelogram FECO is equal to the

triangle ABC, and it has one of iu angles CEP eqosl to the P^en angle

D : Wherefore there ha* been described a pertUelomn FECG equal to

a given triangle ABC, having one of iu angles CEF equal to the given

angle D.

Cor. Hence, if the angle D be a right angle, the parallelogram EFGC
wilt be a rectangle, equivalent to the trianpe ABu ; and therefore the

same construction will apply to the problem : to mak§ a trioMgU oquitaltmt

to a given rtctangU. *

PROP. XLIII. THEOR.

The compiowttnt* of tkt parallelograms wkieJk an about ti§ diamettr of an^

paralUlogram^ an eqmal ta mm a^otMor,

Let ABCD be a parallelogram of which the diameter is AC ; let EH,
FG be the parallelograms about AC, that is, through which AC passes, and

let BK, KD be the other parallelograms,

which make up the whole figure A BCD,
and are therefore called the complements

;

7*he complement BK is equal to the com-
plement KD.

Because .\BCD is a parallelogram and

AC iia diameter, the triungio .\UC is

equal (34. 1.) to the triangle ADC : And
because EKHA is a parallelogram, and
AK its diameter, the triangle AEK is

equal to the triangle A II K : For the same
reason, the triangle KGC is equal to the



38 ELEMENTS

triaiio-le KFC. Then, because the triangle AEK is equal to the triangle

AHK, and the triangle KGC to the triangle KFC ; the triangle AEK, to-

gether with the triangle KGC, is equal to the triangle AHK, together with

Jhe triangle KFC : But the whole triangle ABC is equal to the whole

ADC ; therefore the remaining complement BK is equal to the remaining

complement KD.

PROP. XLIV. PROB.

To a given straight line to apply a parallelogram, which shall he equal to a given

triangle, and have one of its angles e;^ual to a given rectilineal angle.

Let AB be the given straight line, and C the given triangle, and D the

given rectilineal angle. It is required to apply to the straight line AB a

parallelogram equal to the triangle C, and having an angle equal to D.

Make (42. L) the parallelogram BEFG equal to the triangle C, having th«

E^
//' BQ\ y^ -IM

HA. L
angle EBG equal to the angle D, and the side BE in the same straight

line with AB : produce FG to H, and through A draw (31, 1.) AH parallel

to BG or EF, and join HB. Then because the straight line HF falls upon

the parallels AH, EF, the angles AHF, HFE, are together equal (29. 1.)

to two right angles ; wherefore the angles BHF, HFE are less than two

right angles ; But straight lines which with another straight line make the

interior angles, upon the same side less than two right angles, do meet if pro-

duced (1 Cor. 29. 1.) : Therefore HB, FE will meet, if produced ; let them

meet in K, and through K draw KL parallel to EA or FH, and produce HA,
GB to the points L, M : Then HLKF is a parallelogram, of which the diam-

eter is HK.and AG, ME are the parallelograms about HK; and LB, BF are

the complements ; therefore LB is equal (43. 1.) to BF : but BF is equal

TO the triangle C ; wherefore LB is equal to the triangle C ; and because

the angle GBE is equal (15. 1.) to the angle ABM, and likewise to the an-

gle D ; the angle ABM is equal to the angle D : Therefore the parallelo-

gram LB, which is applied to the straight line AB, is equal to the triangle

C, and has the angle ABM equal to the angle D.
Cor. Hence, a triangle may he converted into an equivtlent rectangle,

having a side of a given length : for, if the angle D be a right angle, and

AB the given side, the parallelogram ABML will be a rectangle equiva

lent to the triangle C.
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PROP. XLV. PROB.

To describe a paraUelo^am equal to a given reetilineal figure, and hitving

an angle equal to a given r*ctilineal angle.

Let ABCD be the giren rectilineal figure, and E the given rectilineal

•ngle. It is required to describe a parallelogram equal to ABCD, and bar-

ing an angle equal to £.
Join DH, and describe (42. 1.) the parallelogram FH equal to the tri-

angle ADB, and having the angle HKF equal to the angle E ; and to the

straight line GH (44. 1.) apply the |>arallelogram GM equal to the triangle

DBG, having the angle GilM equal to the angle £. And because the an-

gle E is equal to each of the angles FKH, GHM, the angle FKIl is equal

to GH.M ; add to each of these the angle KHG ; therefore the angles

rKII, KHG are equal to the angles KHG, GHM ; but FKH. KHG are

equal (29. 1.) to two right angles; therefore also KHG, GHM are equal

to two right angles : and beca\ise at the fx>int H in the straight lines GH.

the two straight lines KIT, HM, upon the opoosite sides of GH, make the

adjacent angles equal to two right angles. KH is in the same straight line

(14. I.) with HM. And because the straight line HG meets the parallels

KM« FG,the alternate angles MHG, HGF are equal (29. 1.) ; add to each
of these the angle HGL: theroforc ihc angles MHG, HGL, are equal to

theanglea HGF. HGL : Hut the angles MHG. HGL. are equal (20. l.)io

two right angles ; wherefore aUo the aaglce HGF. HGL. are equal to two
right angles, and FG is therefore in the same straight line with (• L. And
becaose KF is parallel to HG. and HG to ML. KF is paraUei (30. 1.) to

ML ; but KM, FL are parallels : wherefore KFLM is a parallelogram.

And because the triangle ABD is eqOal to the parallflogram HF, and the

triangle DBC to the parallelogram G.Nf, the whole rectilineal figure ABCD
is equal to the whole psrallclogram KFLM ; tliereforc the paralU'Iogram

KFLM has been described equal to the given rectilineal figure ABC'D, hav-

ing the angle FKM equal to the given angle E.
^

Cos. From this it is manifest how to a given straight line to apply a

parallelogram, which shall have an angle equal to a given rectilineal angle,

and shall be equal to a given rectilineal figure, ris. by applying: (14- L)
to the given straight line a parallelogram equal to the first fiangle ABD.
Slid hsring an angle equal to the given angle.
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PROP. XLVI. PROB.

To describe a square upon a given straight line.

Let A B be the given straight line : it is required to describe a square

upon AB.
From the point A draw (11. 1.) AC at right angles to AB ;

and make

(3. 1.) AD equal to AB, and through the point D draw DE parallel (31. 1.)

to AB, and through B draw BE parallel to AD ; therefore ADEB is a par-

allelogram ; whence AB is equal (34. 1.) to DE, and AD to BE ;
but BA

is equal to AD : therefore the four straight -^

lines BA, AD, DE, EB are equal to one an-

other, and the parallelogram ADEB is equi-

lateral ; it is likewise rectangular; for the

straight line AD meeting the parallels, AB, DE,
makes the angles BAD, ADE equal (29. 1.) to

two right angles ; but BAD is a right angle ;

therefore also ADE is a right angle now the

opposite angles ofparallelograms are equal (34.

1.) ; therefore each o"f the opposite angles ABE,
BED is a right angle ; wherefore the figure

ADEB is rectangular, and it has been demon-

strated that it is equilateral ; it is therefore a "^^

square, and it is described upon the given straight line AB.
Cor. Hence every parallelogram that has one right angle has all its an

gles right angles.

E

B

PROP. XLVIL THEOR.

In any right angled triangle, the square which is described upon the side

subtending the right angle, is equal to the squares described upon the sides

which contain the right angle.

Let ABC be a right angled triangle having the right angle BAC ; the

square described upon the side BC is equal to the squares described upon
BA, AC.
On BC describe (46. 1.) the square BDEC, and on BA, AC the squares

GB, HC ; and through A draw (31. 1.) AL parallel to BD or CE, and join

AD, FC ; then, because each of the angles BAC, BAG is a right angle

(25. def.), the two straight lines AC, AG upon the opposite sides of AB,
make with it at the point A the adjacent angles equal to two right an-

gles ; therefore CA is in the same straight line (14. 1.) with AG; for

the same reason, AB and AH are in the same straight line. Now be-

cause the angle DBC is equal to the angle FBA, each of them being a

right angle, adding to each the angle ABC, the whole angle DBA will be

equal (2. Ax.) to the whole FBC ; and because the two sides AB, BD
are equal to the two FB, BC each to each, and the angle DBA equal to

the angle FBC, therefore the base AD is equal (4. 1.) to the base FC,
and the triangle ABD to the triangle FBC. But the parallelogram BL
is double (41. 1.) of the triangle ABD, because they are upon the same
base, BD, and between the same parallels, BD, AL; and the square GB
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is double of the triangle 6FC be-

cause these also are upon the same
base FB, and between the same par-

allels FB, GC. Now the doubles

ofequals are equal (6. Ax.) to one an-

other; therefore the parallelogram

BL is equal to the square GB : And
in the same manner, by joining AE,
BK, it is demonstrated that the par-

allelogram CL is equal to the square

HC. Therefore, the whole square

BDEC is equal to the two sqimres

GB, HC : and the square BD£C is

described upon the straight line RC,
Mid the squares GB, HC upon BA,
AC : wherefore the square upon the

side BC is equal to the squares upon
the side* BA, AC.

Cor. 1. Hence, the square of one of the sides of a right angled triangitt

is equivalent u> the square of the hypotenuse diminished by the square ol

the other side ; which is thus expressed i AB'= BC'—AC.
CoK. 2. If AB=AC ; that is, if the triangle ABC be right angled and

isoM:eles; BC's2AB's2AC ; therefore, BC=AB^ 2.

CoR. 3. Hence, also, if two right angled triangles hare two sides of

the one, equal to two corresponding aides of the other ; their third sides

will also be equal, and the trianglee will be identicaL

PROP. XLVni. THEOR.

If tMt mptof described iipMi oma of the sides of a triamgte, ho o^ai to the

of it;

f

souaros doscribed ypon tho other two sides oj

these two sidos is a right angle.

tho amglo contained 6y

If the square described upon BC, one of the sides of tbo triaagie ABC,
be equal to the squares upon the other sidos BA, AC, the an^e BAG is

a right angle.

From the point A draw (11. 1.) AD at right angles to AC, and make
AD equal to BA, and join DC. Then because DA is equal to AB, the

square of DA is eaual to the square of AB ; To
each of these add the squani of AC ; therefore the

squares of DA, AC are equal to the sqtures of BA,
AC. But the square of DC is equal (47. 1.) to

the squares of DA, AC, because DAC is a right

angle ; and the square of BC, by hypothesis, is

equal to the squares of B.\, AC ; therefore, the

square of DC is equal to the square of BC ; and
therefore also the side DC is eqinl to the side BC.
And because the side D.\ is equal to AB, and AC
common to the two triangles DAC, BAG, and the base DC likewise equa<

to the base BC, the angle DAC is equal (8.^ 1.) to the angle UAC ; Bui

DAC is a right angle ; uerefore also BAG is' a right angle.

6
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ADDITIONAL PROPOSITIONS.

y PROP. A. THEOR.

A perpendicular is the shortest line that can be drawn from a point, situated

without a straight line, to that line : any two oblique lines drawn from the

samepoint on different sides of theperpendicular, cutting off equal distances

on the other line, will be equal ; and any two other oblique lines, cutting off

unequal distances, the one which lies fartherfrom the perpendicular will

be the longer.

If AB, AC, AD, &c. be lines drawn from th« given point A, to the in-

definite straight line DE, of which AB is perpendicular; then shall the

perpendicular AB be less than AC, and AC less than AD, and so on.

For, the angle ABC being a right one,

the angle ACB is acute, (17. 1.) or less

than the angle ABC. But the less angle

of a triangle is subtended by the less side

(19. 1.) therefore, the side AB is less than

the side AC.
Again, if BC=BE; then the two ob-

lique lines AC, AE, are equal. For the

side AB is common to the two triangles

ABC, ABE, and the contained angles ABC
and ABE equal; the two triangles must

be equal (4. 1.) ; hence AE, AC are equal.

Finally, the angle ACB being acute, as beforfe, the adjacent angle ACD
will be obtuse ; since (13. 1.) these two angles are together equal to two
right angles; and the angle ADC is acute, because the angle ABD is

right ; consequently, the angle ACD is greater than the angle ADC ; and,

since the greater side is opposite to the greater angle (19. 1.) ; therefore

the side AD is greater than the side AC.
Cor. 1. The perpendicular measures the true distance of a point from

a line, because it is shorter than any other distance.

CoR. 2. Hence, also, every point in a perpendicular at the middle point

of a given straight line, is equally distant from the extremities of that line.

Cor. 3. From the same point, three equal straight lines cannot be

drawn to the same straight line ; for if there could, we should have two
equal oblique lines on the same side of the perpendicular, which is impos-
sible.

PROP..B. THEOR.

When the hypotenuse and one side of a right angled triangle, are respective-

ly equal to the hypotenuse and one side of another ; the two right, angled
triangles are equal.

Suppose the hypotenuse AC=rDF, and the side AB=DE ; the right

angled triangle ABC will be equal to the right angled triangle DEF.
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Their equality would be manifest, if the third sides BC and EF were
equal. If possible, suppose that those sides arc not equal, and that BC is the

greater. Take BH= EF(3. 1.); andjoin AH. The triangle ABH= DEF;
fur the right angles B and £ are

equal, the side AB=DE, and BH
=EF ; hence, these triangles are

equal (4. 1.), and consequently

AH= DF. Now {by hyp.), w
have DFacAC; and therefor*,

AHsAC. But by the last prop*

osition, the oblique line AC can*

not be equal to the oblique line

AH, wtuch lies nearer to the per*

pendicular AB; therefore k is

impossible that BC can differ

from EF ; hence, then, the trian*

i;les ABC and DEF are equal.

H C £

PROP. C. THEOR.

Two angles are equal if their sides hs p«ratlelt McA to eadk,a»d lying m the

same direction.

If the straigk linet AB, AC be ptnUel
to DF, D£ ; the angle BAC is equal to

EDF.
For, diaw GAD through the reiticeiL

And since AB is parallel to DF, th« ex-

terior angle GAB is (29. 1 .) equal to GDF

;

and, for the same reason, GAC is eaual to

GD£ ; there consequently remains the an-

gle BAC=EDF.

Cos. If BA, AC fao prodoced to I and U« tbo angb BAC«
hence, the angle HAI is also equal to EDF.

iHAl

SCHOUUBl

The restriction of this proposition to the case whore the side AB liea

in the same dlrecUon with DF, and AC in the same direction with DE,
is necessary ; because the angle CAl would hare its aides parallel to those

of the angle EDF, but would not be «q«al to k. In that case, CAI and
EDF would be together equal to two rifbt an^ea.
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PROP. D. PROS.

Two angles of a triangle being given, tofind the third.

Draw any straight line CD ; at a

point therein, as B, make the angle

CBA equal to one of the given an-

gles, and the angle ABE equal to

the other : the remaining angle EBD
will be the third angle required ; be-

cause those three angles (Cor. 13. 1.)

are together equal to two right angles.

PROP. E. PROB.

Two angles of a triangle and a side being given, to construct the triangle.

The two angles will either be both adjacent to the given side, or the

one adjacent and the other opposite : in the latter case, find the third angle

(Prop. D.) ; and the two adjacent angles will thus be known.
Draw the straight line BC equal to the

given side ; at the point B, make an angle

CBA equal to one of the adjacent angles,

and at C, an angle BCA equal to the other

;

the two lines BA, CA, will intersect each
other, and form with BC the triangle re-

quired ; for if they were parallel, the an-

gles B, C, would be together equal to two
right angles, and therefore could not be-

long to a triangle : hence, BAC will be the triangle required.

PROP. F. PROB.

Two sides and an angle opposite to one of them being given, to construct the

triangle.

This Problem admits of two cases.

First. When the given angle
is obtuse, make the angle BCA
equal to the given angle ; and take
C'A equal to that side which is

adjacent to the given angle, the
arc described from A as a centre,

with a radius equal to AB, the
other given side, would cut BC on
opposite sides of C ; so that only -o i=^
one obtuse angled triangle could be "'-' ^
formed

; that is, the triangle BC'A will be the triangle required
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And, if the given angle were right, althongh two triangles would be

larmed, yet, as the hypotenuse would meet BC at equal distances from the

common perpendicular, these triangles would be equal.

Secondly. If the given angle be acute, and the side opposite to it greater

than the adjacent side, the same mode of construction will apply : for, mak-
ing BCA equal to the given angle, and AC equal to the adjacent side

;

(hen, from A as centre, with a radius equal to the other given side, describe

an arc, cutting CB in B ; draw AB, and CAB will be the triangle requi-

red.

Bui tf the given angle is acute, and the side opposite to it less than the

other jviven side ; make the angle CBA equal to the given angle, and take

BA equal to the adjacent side ; then, the arc described from the centre A,

with the radius AC equal to the opposite side, will cut the straight line

BC in two points C^ and C, lying on the same side of B : hence, there will

be two triangles BAC^, BAG, either of which will Mtiafy the conditions

of the problem.

SCHOLIUM.

In the last case, if the opposite side was equal to the perpendicular from

the point A on the line BC, a right ansled trianfle would be formed. And
the prob'm would bo iropoesible in all eases, if the opposite side was less

than tne perpendicular let fall from the point A on the straight line BC.

PROP. G. PROB.

To find a tnangU that skali U t^woUmi f mttf giotn rtetikiuaifgurt.

Let ABODE be the nven rectilineal figitre.

Draw the diagonal CE. catting oflf the triangle ODE ; draw DP panL
lei to CE, meeting AE produced, and join CF: the polygon ABODE
will he equivalent to the poiygoa
ABCF. which has one side leM
than the original polygon.

For the triangles CDE, CFE,
have the base CB conmioo, and
they are between the nme panl-
tels ; since their vertices D, r , are

situated in a line DK parallel to the

base : these triangles are therefore

equivalent (37. 1.) Draw, now,
the diagonal C.\. and BG parallel

to it, meeting EA produced : join

06, and the polygonABCF will be
reduced to an equivalent triangle

;

and thus the pentagon AUCDE
will bo reduced to an equivalent triangle GCF.
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The same process may be applied to every other polygon ; for, by suc-

cessively diminishing the number of its sides, one being retrenched at each

»tep of the process, the equivalent triangle will at length be found.

CoR. Since a triangle may be converted into an equivalent rectangle

it follows that any polygon may be reduced to an equivalent rectangle.

PROP. H. PROB.

To find the side of a square that shall be equivalent to the sum oftwo squares

Draw the two indefinite lines AB, AC, per-

pendicular to each other. Take AB equal to

the side of one of the given squares, and AC
equal to the other

;
join BC : this will be the

side of the square required.

I'or the triangle BAC being right angled,

the square constructed upon BC (47. 1.) is

equal to the sum of the squares described upon
AB and AG.

SCHOLIUM. •

A square may be thus formed that shall be equivalent to the sum of any
number of squares ; for a similar construction which reduces two of them
to one, will reduce three of them to two, and these two to one, and so of

others.

PROP. I. PROB.

Tofind the side of a square equivalent to the difference oftwo given squares.

Draw, as in the last problem, (see thefig.) the lines AC, AD, at right angles

to each other, making AC equal to the side of the less square ; then, from
C as centre, with a radius equal to the side of the other square, describe

an arc cutting AD in D : the square described upon AD will be equivalent

to the difference of the squares constructed upon AC and CD.
For the triangle DAC is right angled ; therefore, the square described

upon DC is equivalent to the squares constructed upon AD and.AC: hence
(Cor. 1. 47. :.;, AD2=CD2-AC2.

PROP. K. PROB.

A rectangle being given^ to construct an equivalent on'e, having a side of a
given length.

L«tAEFH be the given rectangle, and produce one of its sides, as AH, till
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HB be the given length, and draw BFD
meeting the prolongation of AE in D ;

then produce £F till FG is equal to HB :

draw BGC, HFK, parallel to AED, and
through the point D draw DKC parallel

to AB or EG; then, the rectangle

GFKC, having the side FG of a given

length, is equal to the given rectangle

AEFH (43. 1.)

Cos. A polygon may be converted into an equivalent rectangle, having one

of it* sides of a given length.
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DEFINITIONS.

1 Every right angled parallelogram, or rectangle, is said to be contained

by any two of the straight lines which are about one of the right an-

gles.

" Thus the right angled parallelogram AC is called the rectangle contam-
" ed by AD and DC, or by AD and AB, &c. For the sake of brevity,

" instead of the lectangle contained by AD and DC, we shall simply say
" the rectangle AD . DC, placing a point between the two sides of the

" rectangle."

A. In Geometry, ihe product of two lines means the same thing as their

rectangle, and this expression has passed into Arithmetic and Algebra,

where it serves to designate the product of two unequal n\xmbers or

quantities, the expression square being employed to designate the pro-

duct of a quantity multiplied by itself.

The arithmetical squares of

1, 2, 3, &c. are 1, 4, 9, &c.
So likewise the square de-

scribed on the double of

a line is evidently four

times the square described

on a single one ; on a triple

line nine times that on a

single one, &c.

'Z In every parallelogram, any of the

parallelograms about a diameter, to-

gether with the two complements, is

called a Gnomon. " Thus the paral-
" lelogram HG, together with the
" complements AF, FC, is the gno-

• " mon of the parallelogram AC. This
"" gnomon may also, for the sake of
^ brevity, be called the gnomon AGK
'or EHC."
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PROP. I. THEOR.

If there be two straight lines, one of tckieh is divided into any number of
parts ; the recian^^e contained by the tvco straight lines is equal to the

rectangles contained by the undivided line, and the several parts oftkt

divided line.

Let A and BC be two straight lines ; and let BC bo divided into any
parts in the points D, £ ; the rectangle A.BC is equal to the several rect-

angles A.BD, A.DE, A.EC.
From the point B draw (Prop. 11.1.)

BF at right angles to BC, and make BG
e^iual (Prop. 3. 1.) to A; and through

G draw (Prop. 31. 1.) GH parallel to

BC ; and through D, E, C, draw DK,
EL, CH parallel to BG ; then BH, BK.
DL, and EH are rectangles, and BI1=
BK-fDL+EH.

But BH = BG.BC= A.BC, because

BG= A: Also BK = BG.BI)=A.BD,
because BG=A; and DL=UK.DE=
A.DE. because (34. 1.) DK= BG=sA.
In like manner, EH= A.EC. Therefore A-BC=A.BD+A.DE+A.EC

;

that is, the rectangle A.BC is equal to the several recungles A.BD, A.DE,
A.EC.

SCHOLIUM.
The properties of the sections of lines, demonstrated in this Book, w*

easily derived from Algebra. In this proposition, for instance, let the seg>

menu of BC be denoted by 6, c, and d; then, A{b-^e-{'d)s:\b-^Ae-\-A^.

PROP. 11. THEOR.

If a straight line he div^ided into any ttea parts, the rectangles contained by tkt

vhole and each oftheparts, are logrther eqtial to the square of the whole Ima.

Let the straight line AB be divided into any
two parts in the point C ; the recungle AB.BC,
togetner with the recungle A B.AC, is equal to

the sqiure of AB ; or AB.AC+ AB.BCsAB>.
On AB describe (Prop. 46. 1.) the square

ADEB, and through C draw CF (Prop. 31. 1.)

parallel to AD or BE; then AF+CEsAE.
But AF=AD.AC= AB.AC. I>erause AD=AB :

CE=:BE.BC=AB.BC; and AE=AB«. There-
fore AB.AC+AB.BC=AB^

SCHOLIUM.
This property is endent from Algebra : let AB be denoted by a, and tbt

segmenu AC, CB, by A and «/. rt«peclivcly ; then, a3s6-f J ; therefore,

nultiplying both members of (his t>«)uality bv a, we shall have a-=ah-^ad
7
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PROP. III. THEOR.

If a straight line be divided into any two parts, the rectangle contained by tht

whole and one of the parts, is equal to the rectangle contained by the twt*

parts, together with the square of the aforesaid part.

Let the straiglit line AB be divided into two parts, in the point C ; the

rectangle AB.BC is equal to the rect-

angle AC.BC, together with BC^.

Upon BC describe (Prop. 46. 1.) the

square CDEB, and produce ED to F,

and through A draw (Prop. 31. 1.) AF
parallel to CD or BE ; then AE=AD
+ CE.

But AE = AB.BE = AB.BC, be-

cause BE=BC. So also AD=AC.
CD=AC.CB; and CE=BC2; there-

fore AB.BC=AC.CB+BC2.

SCHOLIUM.

In this proposition let AB be denoted by a, and the segments AC and
CB, by b and c ; then a=b-\-c : therefore, multiplying both members of

this equality by c, we shall have ac=bc-\-c'^.

PROP. IV. THEOR.

If a straight line be divided into any two parts, the square of the whole line is

equal to the squares of the two parts, together with twice the nectangle con-

tained by the parts.

Let the straight line AB be divided into any two parts in C ; the square

of AB is equal to the squares of AC, CB, and to twice the rectangle con-

tained by AC, CB, that is, AB2=:AC24-CB2+2AC.CB.
Upon AB describe (Prop. 46. 1.) the square ADEB, and join BD, and

through C draw (Prop. 3L 1.) CGF parallel to AD or BE, and through G
draw HK parallel to AB or DE. And because CF is parallel to AD, and
BD falls upon them, the exterior angle BGC
is equal (29. 1.) to the interior and opposite

angle ADB ; but ADB is equal (5. 1.) to the

angle ABD, because BA is equal to AD, be-

ing sides of a square ; wherefore the angle

CGB is equal to the angle GBC ; and there-

fore the side BC is equal (6. 1.) to the side

CG ; but CB is equal (34. 1.) also to GK and
CG to BK ; wherefore the figure CGKB is

equilateral. It" is likewise rectangular ; for

the angle CBK being a right angle, the other

angles of the parallelogram CGKB are also right angles (Cor. 46. L)
Wherefore CGKB is a square, and it is upon the side CB. For the same

A.

D

K

F E
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reason HF also is a square, and it is upon the side HG, which b equal to

AC : therefore HF, CK are the squares of AC, CB. And because the

complement AG is equal (43. l.)to the complement GE ; and because

AG=AC.CG=AC.CB, therefore also GE=AC.CB, and AG+GE=
2AC.CB. Now, HF=AC2 and CK=CB»; therefore, HF+CK+AG
^-GE=AC2^-CB2+2AC.CB.

But HF-fCK-|-AG+GE=the figure AE, or AB«; therefore AB'»
AC2+CB2+2AC.CB.

CoR. From the demonstration, it is manifest that the parallelograms

about the diameter of a square are likewise squares.

SCHOLIUM.
This property is derived from the square of a binomial. For, let the two

parts into which this line is divided be denoted by a and h ; then, {a-\-bY

PROP. V. THEOR,

Ifa straight Untie divided into two equalparts, andadsointo two uruqualparts;

the rectangle contained by the unequal parts, together wUh the square ofthe
line between the points of section^ is equal to the square of halfthe line.

Let the straight line AB be divided into two eqtial parts in the point C,
and into two unequal parts in the point D ; the rectangle AD.DH, together

with the square of CD, is equal to the square of CB, or AD.DB+CD'k
CB».
Upon CB describe (Prop. 4G. 1.) the S(]uare CEFB, join BE, and through

D draw (Prop. 31. 1.) DHG parallel to CE orBF; and through H draw
KLM parallel to CB or EF ; and
also through A draw AK parallel to

CLor BM : And because CH= HF,
if DM be added to both, C.M= DF.
But AL=(36. 1.) CM. therefore AL
sDF. and adding CH to both, AH
Bgnomon C.MG. But AH =: AD.
DH=AD.DB, because DH = DB
(Cor. 4.2); therefore gnomon CMG
sAD.DB. To each add LG=CD', then, gnomon r.MG +LG=AD.DB
4.CD>. But C.MG-f LG='BC»; therefore AD.DB+CD»=BC».

.

** Cor. From this proposition it is manifest, that the diflbrcnce of the

••squares of two unequal lines, AC, CD, is equal to the rectanple rontain-
•« ed bv their sum and difference, or that AC*—CD'=(AC-»-CD) (AC

—

CD)>

SCHOLIUM.
In this proposition, let AC be denoted by a, and CD by b ; then. A I):^

a+i, and DB=o

—

b; therefore, by Algebra, (a4-i)x(a—i)=(/-—A";

that is, the product of the sum and difference of two quantities, is cquivaleM
to the difference of their squares
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PROP. VI THEOR.

Ifa straight line be bisected, andproduced to any point ; the rectangle contained

by the whole line thus produced, and the part of it produced, together with the

square ofhalfthe line bisected, is equal to the square ofthe straight line which

is made up of the half and the part produced.

Let the straight line AB be bisected in C, and produced to the point D ;

the rectangle AD.DB together with the square of CB, is equal to the

square of CD.
Upon CD describe (Prop. 46.1.) the square CEFD, join DE, and

through B draw (Prop. 31.1.) BHG parallel to CE or DF, and through H
draw KLM parallel to AD or EF, and also through A draw AK parallel

to CL or DM. And because AC is

equal to CB, the rectangle AL is

equal (36.1.) to CH ; but CH is

equal (43. 1. ) to HF ; therefore also

AL is equal to HF : To each ofthese

add CM ; therefore the whole AM is

equal to the gnomon CMG. Now
AM=AD.DM = AD.DB, because

DM=DB. Therefore gnomonCMG
=AD.DB, and CMG+LG=AD.
DB+CB2. But CMG+LG=CF
=CD2, therefore AD.DB+ CB2=CD2.

SCHOLIUM.
This property is evinced algebraically ; thus, let AB be denoted by 2a,

and BD by b ; then, M)=2a-\-b, and CD=a+ J. Now by multiplication,

b{2a+b)=2ab-\-b'^ ; therefore,

by adding a^ to each member of the equality, we shall have

i(2c+i)+ a2=a2-f 2ai+i2 ;

.-. b{2a-^b)-{-a^={a-\-bf.

PROP. VII. THEOR.

If a straight line be divided into two parts, the squares of the whole line, and

ofone ofthe parts, are equal to twice the rectangle contained by the whole and
that part, together with the square of the other part.

Let the straight line AB be divided into any
two parts in the point C ; the squares of AB,
BC, are equal to twice the rectangle AB.BC,
together with the square of AC, or AB^+BC^
=2AB nC+ AC2.
Upon AB describe (Prop. 46. 1.) the square

ADEB, and constrtlct \\w figure as in the pre-

ceding propositions : Because AG= GE, AG
+CK = GE+ CK, thai is, AK = CE, and
therefore AK+CE=2AK. But AK+CE
=sgnomon AKF+CK ; and therefore AKF I

I
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+CK=2AK = 2AB.BK = 2AB.BC, because BK = (Cor. 4. 2.) BC.
Since then, AKF+CK=2AB.BC, AKF+CK-fHF=2AB.BC+HF

;

and because AKF+HF=:AE=AB», AB2+CK=2AB.BC+HF, that

IS, (since CK=CB«, and HF=AC2,) AB»+CB»=2AB.BC+AC^.

** Cor. Hence, the sum of the squares of any two lines is equal to
** twice the rectangle contained by the lines together with the square oi

** the difference of the lines."

SCHOLIUM.

In this proposition, let AB be denoted by a, and the segments AC and

CB by 6 and c

:

thena'=6'+2^4-e*;

adding e* to ^ach member of this equality, we shall hare,

a'4.c»=6*+2Ae-f2e»

;

.-. a'+c»=6'+2c(6-f c),

or a3+c's2ac+6>.

CoR. From this proposition it is evident, that th» tqman oescriM cm
the difference ofttoo lines is equivalent to tke sum ofthe souares described om
the lines respectively^ minus twice the rectangle contained by the lines. For
a

—

essb ; therefore, by inTolution, o"—^2«e-f-«*=*'. This may be also

derived from the above algebraical equality, by transposition.

PROP. VIII. THEOR.

Ifa straight line be divided into any two parts,four times the rectangle com-

tained by the u)hole line, and one of this parts, together with the square of
the other part, is equal to the square ofthe straight lime which is made up

of the whole and thefirst-memtioned part.

Let the straight line AB be divided into any two parts in the point C

;

four times the rectangle AB.BC, together with the souare of AC, is equal

to the square of the straight line made ap of AB and BC together.

Produce AB to D, so that BD be equal to CB, and upon AD describe

the square AEFD ; and eonf*nict two figures such as in the preceding.

Because GK is equal (34. 1.) to CB, and CB to BO, and BD to KN,GR
is equal to KN. For the same reason, PR
is equal to RO ; and because CB is equal

to BD, and GK to KN, the rectangles CK
and BN are equal, as also the rectangle*

GR snd RN: But CK is equal (43. 1.)

to RN, because they are the complements

of the parallelogram CO : therefore also

BN is equal to GR ; and the four rect-

angles BN, CK, GR, RN are there-

foro equal to one another, and so CK-4*
BN -f GR 4- RN = 4CK. Again, be-

cause CB is equal to BD, and BD equal



I

|l ELEMENTS

(Cor. 4. 2.) to BK, tliat is, to CG ; and CB equal to GK, that is, to GP

;

therefore CG is equal to GP ; and because CG is equal to GP, and PR to

RO, the rectangle AG is equal to MP, and PL to RF : but MP is equal

(43. 1.) to PL, because they are the complements of the parallelogram

ML ; wherefore AG is equal also to RF. Therefore the four rectangles

AG, MP, PL, RF,are equal to one another, and so AG+MP+PL+RF
=4AG. And it was demonstrated, that CK+BN+GR+RN=4CK

;

wherefore, adding equals to equals, the whole gnomon A0H=4AK.
Now AK=AB.BK=AB.BC, and 4AK=4AB.BC ; therefore, gnomon
A0H=4AB.BC ; and adding XH, or (Cor. 4. 2.) AC^, to both, gnomon
AOH+XH=4AB.BC+AC2. But A0H+XH=AF = AD2; therefore

AD2=4AB.BC+AC2.

" Cor. 1. Hence, because AD is the sum, and AC the difference of
" the lines AB and BC, four times the rectangle contained by any two
" lines, together with the square of their difference, is equal to the square
" of the sum of the lines."

" CoR. 2. From the demonstration it is manifest, that since the square
" of CD is quadniple of the square of CB, the square of any line is qua-
" druple of the square of half that line."

SCHOLIUM.

In this proposition, let the line AB be denoted by a, and the parts AC
and CB by c and b ; then AD=c-}-26. Now, since a=b-{-c, multiplying

both members by 4i, we shall have

4ab=ib^+4bc
;

and adding c^ to each member of this equality, we shall have,

4aft+c2=c2+4ic+4i2,
or 4a&+c2=(c 4-25)2.

PROP. IX. THEOR.

If a straight line be divided into two equal, and also into two unequal parts

,

the squares of the two unequal parts are together double of the square of halj

the line, and of the square of the line between the points of section.

Let the straight line AB be divided at the point C into two equal, and
at D into two unequal parts ; The squares of AD, DB are together double

of the squares AC, CD.
From the point C draw (Prop. 11.1.) CE at right angles to AB, and

make it equal to AC or CB, and join EA, EB ; through D draw (Prop 3]

.

1.) DF parallel to CE, and through F draw FG parallel to AB ; and join

AF. Then, because AC is equal to CE,
the angle EAC is equal (5. \.) to the

angle AEC ? and because the angle ACE
is a right angle, the two others AEC,
EAC together make one right angle (Cor.

4. 32. 1.) ; and they are equal to one ano-

ther ; each of them therefore is half of a

right angle. For the same reason each
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of the angles CEB, EEC is Iialf a right angle ; and therefore the wholo
AEU is a right angle ; And because the angle GEF is half a right angle,

and EOF a right angle, for it is equal (29. 1.) to the interior and opposite

angle ECB, the remaining angle EFG is half a right angle ; therefore the

angle GEF is equal to the angle EFG, and the side EG equal (6. 1.) to the

sidn GF ; Again, because the angle at B is half a right angle, and FDB a
right angle, for it is equal (29. 1.) to the interior and opposite angle ECB,
the remaining angle BF'D is half a right angle ; therefore the angle at B ia

equal to the angle BFD, and the side L)F to (6. 1.) the side DB. Now, be-

cause AC=CE, AC'=CE2, and AC2+CE2=2AC^ But (47. 1.) AE»«
AC^+CE* ; therefore AE«=2AC^ Again, because EG=GF, EG==:GF«.
and EG2+GF2=2GF'. But EF2=sEG=+GF=; therefore, EP=2GF«
=JCD',because(34. l.)CDr=GF. And it was shown that AE«=2AC»;
therefore AE'+EF»=2AC«+2CD'. But (47. 1.)' AF'=AE»+EF«,
andAD«+DF«=rAF»,orAD>+DB==sAF»; therefore, also, AD»+DB»«
2ACH2CD'.

SCHOLIUiVL

'Phis property is evident from the algebraical expresaion,

(a+4)»+(o—A)'=s2a»4.2*»

;

where a denotes AC, and b denotes CD ; hence, a-f & bAD, a—hssDB.

PROP. X. THEOR.

Jfa straight line behisected, and produced to anypoint, tka fquare nftkt wioU
line thus produced, and the gquart of the part of it produced, are toother
double of the souare of half the line bisected, and of thi stjuart of the Um
made up of the halfand the part produced.

Let the straight line AB be bisected in C, and produced to the point D

;

lilt squares of AD, DB are double of the squares of AC, ('D.

From the p«>int C draw (Prop. 11.1.) CE at right angles to AB, and make
it equal to AC or CB ; join AB, EB ; through E draw (Prop. 31. 1.) EF
parallel to AB, and through D draw DF parallel to CE. And becauae
the straight line EF movU the parallels EC, FD. the angles CEF, EFD
are equal f29. 1.) to two right angles ; and therefore the angles BEF, EFD
are less than two right angles ; But straight lines, which with another
straight line make the interior angles upon the same side \c** ihnn two
right angles, do meet (29. 1-). if produced for enough ; therefore EB, FI)
will meet, if produced, towards B, D : let them meet in G, aiid join \G.
Then because AC is equal to CE,
the angle CEA is equal (5. 1.) to

the angle EAC ; and the angle

ACE is a right angle ; therefore

each of the angles CEA, EAC ia

half a right angle (Cor. 4. 32. 1.);

For the same reason, each of the

angles CEB, EBC is half a right

angle; therefore AEB is a right an-

gle : And because EBC is half a
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right angle, DBG is also (15. 1.) half a right angle, for they are vertically

opposite : but BDG is a right angle, because it is equal (29. 1.) to the al-

ternate angle DCE ; therefore the remaining angle DOB is half a right

angle, and is therefore equal to the angle DBG ; wherefore also the side

DB is equal (6. 1.) to the side DG. Again, because EGF is half a right

angle, and the angle at F aright angle, being equal (34. 1.) to the

opposite angle ECD, the remaining angle FEG is half a right angle,

and equal to the angle EGF ; wherefore also the side GF is equal

(6. 1.) to the side FE. And because EC=CA, EC2 + CA2 = 2CA2.
Now AE2r= (47. 1.) AC2-I-CE2; therefore, AE2.1Z 2AC2. Again, be-

cause EF= FG, EF2=FG2, and EF24-FG2=2EF2. ButEG2= (47. 1.)

EF24-FG2; therefore EG2=2EF2; and since EF= CD, EG2=2CD2.
And it was demonstrated, that AE2=2AC2 ; therefore, AE24-EG2=2AC2
-t-2CD2. Now, AG2=AE2+EG2, wherefore AG2=2AC2+2CD2. But

AG2 (47. l.)= AD2+DG2=AD2-(-DB3, because DG=DB : Therefore,

AD2+ DB2:z=2AC2+ 2CD2.

SCHOLIUM.

Let AC be denoted by a, and BD, the part produced, by b ; then ADz=
2a-\-b, and CD=a+5.
Now, (2a+ i)2+ 62= 4a2+4a6+263; h\AAa'^-\-Aah+2b'^=2a?+ 2 {a-\-

fc)2 ; hence, (2a+i)24-Z>2=2a2+2(a-}-6)2, and the proposition is evident

from this algebraical equality.

PROP. XL PROB.

To divide a given straight line into two parts, so that the rectangle contained

by the lohole, and one of the parts, may be equal to the square of the other

part.

Let AB be the given straight line ; it is required to divide it into two
parts, so that the rectangle contained by
the whole, and one of the parts, shall be

equal to the square of the other part.

Upon AB describe (46. 1.) the square

ABDC ; bisect (10. 1.) AC in E, and join

BE
;
produce CA to F, and make (3. 1.)

EF equal to EB, and upon AF describe

(46. 1.) the square FGHA, AB is divided

in H, so that the rectangle AB, BH is equal

to the square of AH.
Produce GH to K : Because the straight

line AC is bisected in E, and produced to

the point F, the rectangle CF.FA, to-

gether with the square of AE, is equal

(6. 2.) to the square of EF: But EF is

equal to EB ; therefore the rectangle CF.
FA, together with the souare of AE. is
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equal to the square of EB ; And the squares of BA, AE are equal

(47. 1.) to the square of EB, because the angle £AB is a right angle;

therefore the rectangle CF.FA, together with the square of AE, is equal

to the squares of BA, AE : take away the square of AE, which is com-
mon to both, therefore the remaining rectangle CF.FA is equal to the

square of .\B. Now the figure FK is the rectangle CF.FA, for AF is

equal to FG ; and AD is the square of AB ; therefore FK is equal to AD

:

take away the common part AK, and the remainder FH is equal to the

remainder HD. But HD is the rectangle AB.BH for AB is equal to

BD; and FH is the sqiuve of AH ; therefore the rectangle AB.BVi is

equal to the square of Ail : Wherefore the straight line AB is divided in

H, so that the rectangle AB.BH is equal to the square of AH.

PROP. XII. THEOR.

In obtuse angled triangles, ifa perpendicular b* drawn from any of tKe aeuU
angles to the opposite side produced, the sauare oftkt tide suMending the

obtuse angle is greater them the squares of the sule* eoiUamimg the obtuse

angle, by twice the rectangle contained by the side upon vhick^nekom wroduced,

the perpendicularfalls, and the straight line intercepted between theperpen-

dicular and the obtuse angle.

Let ABC be an obtnse angled triangle, baring the obtuse angle ACS,
and from the point A let AD be drawn (12. 1.) perpendicular to BC pro-

duced : The square of AB is greater than the squares of AC, CB. by twice

the rectangle BC.CD.
Because the straight line BD is divided j^

into two parts in the point C, BD'= (4. 2.)

BC»+CD>+2BC.CD; add AD» to both:

Then BD'+AD' = BC+ CD»+ AD'+
2BC.CD. But AB»=BD»+AD»(47. 1.),

and AC»= CD'+ AD> (47. I.); therefore,

AB«=BC?+AC>+2BC.CD ; that is. AB>
is greater than BC'+AC by 2BC.CD.

PROP. XIII. THEOR.

In every triangle the square ofthe tide subtending any ofthe acute angles, it

less than the squares of the sides containing that angle, by twice the rectan-

gle contained by either of these sides, and thf straight Itne intercepted be-

tu>een the perpendicular, letfall upon itfrom the opposite angle, andthe acult

angle.

Let ABC be any triangle, and the angle at B one of its acute angles, aiiJ

upon BC, one of the sides conuining it, let fall the perpendicular (I'J. 1.)

AD from the opiwsite angle : The square of .\C, opposite to (tic angle B,

is les> than the squares of CB, B.\ by twice the rectangle CB.BD.
8
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First, let AD fall within the triangle ABC

;

and because the straight line CB is divided

into two parts in the point D (7. 2.), BC2+
BD2=2BC.BD+ CD2. Addtoeach AD2;
thenBC2+BD2+AD2=2BC.BD+ CD2+
AD2. But BD2+AD2=AB2, and CD2+
DA2=zAC2 (47. 1.) ; therefore BC3+ AB^:^

2BC.BD+ AC2 . that is, AC^ is less than

BC2+AB2by2BC.BD.
B n c

Secondly, let AD fall without the triangle ABC :* Then because the

angle at D is a right angle, the angle ACB is greater (16. 1.) than a right

angle, and AB2= (12. 2.) AC^+BC^+SBCCD. Add BC2 to each;

then AB2+BC2=AC2 4-2BC2+2BC.CD. But because BD is divided

into two parts in C, BC2+BC.CD=(3. 2.) BC.BD, and 2BC2+2BC.CD
=2BC.BD: therefore AB2+ BC2=AC2+ 2BC.BD ; and AC^ is less

than AB2+BC3, by 2BD.BC.

Lastly, let the side AC be perpendicular

to BC ; then is BC the straight line between

the perpendicular and the acute angle at B
;

and it is manifest that (47. 1.) AB2+BC2=
AC2+2BC2=AC2+2BC.BC.

PROP. XIV. PROB.

To describe a square that shall be equal to a given rectilinealfigure.

Let A be the given rectilineal figure ; it is required to describe a square

that shall be equal to A.

Describe (45. 1.) the rectangular parallelogram BCDE equal to the

rectilineal figure A. If then the sides of it, BE, ED are equal to one an-

other, it is a square, and v/hat was required is done ; but if they are not

equal, produce one of them, BE to F, and make EF equal to ED, and bi-

sect BF in G ; and from the centre G, at the distance GB, or GF, de-

scribe the semicircle BHF, and produce DE to H, and join GH. Therf*

fore, because the straight line BF is divided intp two equal parts in tl

point G, and into two unequal in the point E, the rectangle BE.P^F, to

gether with the square of EG, is equal (5. 2.) to the square of GF :

but GF is equal to GH ; therefore the rectangle BE, EF, together

with the square of EG, is equal to the square of GH : But the squares of

• See figure of the last Proposition
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HE and EG are equal (47.

1.) to the square of GH :

Therefore also the rectangle

HE.EF, together with the

square of EG, is equal to

the squares of HE and EG.
'J'nke away the square of

EG, which is common to

both, and the rentaining

rectangle BE.EF is equal

to the square of EH : But

DD is the rectangle con-

tained by BE and EF, because EF is equal to ED ; therefore BD is equal

to the square of EH ; and BD is also etfual to the rectilineal figure A ;

therefore the rectilineal figure A is equal to the square of EH : Where-
foro a square has been made equal to the given rectilineal figure A, rix.

the square described upon EH.

PROP. A. THEOR.

If one tide ofa triangle be Insetted, the sum of the tquafe of the other two

sides is double of the square of half the side bisected, and of the stfuar*

of the line drawnfrom the point of bisection to the opposite angle of the

triangle.

IjTit ABC be a triangle, of which the side BC b bisected in D, and DA
drawn to the opposite angle ; the squares of BA and AC are together

double of the squares of BD and DA.
From A draw AE perpendicular to BC, and becaiiB« BEA is a right an

gle, AB«=(47. 1.) BE>4-AE»and AC'=
CE'-I-AE'*; wherefore AB'+AC»= BE» ^
-)-CE*+2AE>. But because the line

BC is cut equally in D, and unequally

in E, BE' + C'E> = (9. 2.) 2BD» -f
2DE' ; therefore AB» + AC'»2BD> 4-

2DE'.2AE'.
Now DE'+AE>=(47. 1.) AD». and

2DE»-H2AE'=2AD» ; wherefore AB'-f-

AC'a«2BD»+2AD>. A ^
PROP. B. THEOR.

The turn of the squares of the diameters of any parallelogram is equa* to

the sum of the squares of the sides of the parallelogram.

Let ABCD be a parallelogram, of which the diameters are AC and UD ;

the sum of the squares of AC and BD is equal to the sum of the squares

of AB, BC, CD, DA.
Let AC and BD intersect one another in E : and because the Tertical

angles AED, CEB are equal (15. 1.), and also the alternate angles EAD,
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ECB (29. 1.), the triangles ADE, CEB have two angles in the one equal

to two angles in the other, each to each ; but the sides AD and BC, which

are opposite to equal angles in

these triangles, are also equal

(34. 1.); therefore the other

sides which are opposite to the

equal angles are also equal (26.

1.), viz. AE to EC, and ED to

EB.
Since, therefore, BD is bi-

sected in E, AB2+AD2=(A.
2.) 2BE2+2AE2; and for the

same reason, CD^ + BC^ =
2BE24-2EC2=2BE24-2AE2, because EC= AE. Therefore AB^-f-AD'
+DC2+BC2=4BE2+4AE2. But 4BE2=BD2, and 4AE2=:AC2 (2.

Cor. 8. 2.) because BD and AC are both bisected in E ; therefore AB^-j-

AD2+CD2+BC2=BD2-f AC2.

CoR. From this demonstration, it is manifest that the diameters of every
parallelogram bisect one another.

SCHOLIUM.

In the case of the rhombus, the sides AB, BC, being equal, the triangles

BEC, DEC, have all the sides of the one equal to the corresponding sides

of the other, and are therefore equal : whence it follows that the angles

BEC, DEC, are equal ; and, therefore, that the two diagonals of a rham-
bus cut each other at right angles.

1
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DEFINITIONS.

A

.

The radius of a circle b the straight line drawn from the centre to the

circumference.

1. A straight line is aaid to touch

a circle, when it meets the cir^

cle, and being produced does

not cut it.

And that line which has but

one point in common with

the circumference, is called a

tangent, and the noint in com-
mon, the point ofcontact.

2. Circles are aaid to touch one
another, which roeetf but do not

cut one another.

3. Stxmiffht lines are said to be eqnallj dis-

tant from the centre of a circle, when the
perpendiculars drawn to them from th« centra
areequaL

4. And the straisht line on which the greater

perpendicular falls, is said to be farther from
the centre.

B. Any portion of the circumference is called an art.

The chord or subtmse of an arc is the straight line which joins its two ex-

tremities.

C. A straight line is said to be inserted in a circle, when the extremities of

it are in the circumference of the circle. And any straight lin which
meets the circle in two points, is called a ttcant.

5. A segment of a circle is the figm« con-
tained by a straight line, and the arc which
it cuts ofL
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6. An anale m a segment is the angle contained

by two straight lines drawn from any point in

the circumference of the segment, to the extre-

mities of the straight line which is the base of

the segment.

An inscribed triangle, is one which has its three

angular points in the circumference.

And, generally, an inscribed figure is one, of

which all the angles are in the circumference.

The circle is said to ciVcuwi^criie such a figure.

7. And an angle is said to insist or stand upon
the arc intercepted between the straight lines

which contain the angle.

This is usually called an angle at the centre. The
angles at the circumference and centre, are

both said to be subtended by the chords or

arcs which their sides include.

8. The sector of a circle is the figure contained

by two straight lines drawn from the centre, and
the arc of the circumference between them.

9. Similar segments of a circle,

are those in which the angles are

equal, or which contain equal an-

gles.

PROP. I. PROB.

To find the centre of a given circle.

Let ABC be the given circle ; it is required to find its centre.

Draw within it any straight line AB, and bisect (10. 1.) it in D
;

from the point D draw (11. 1.) DC at right angles to AB, and produce it

to E, and bisect CE in F : the point F is the centre of the circle ABC.
For, if it be not, let, if possible, G be the centre, and join GA, GD, GB :

Then, because DA is equal to DB, and DG common to the two triangles

ADG, BDG, the two sides AD, DG are equal to

the two BD, DG, each to each ; and the base
GA is equal to the base GB, because they are

radii of the same circle : therefore the angle
ADG is equal (8. 1.) to the angle GDB : But
when a straight line standing upon another
straight line makes the adjacent angles equal to

one another, each of the angles is a right anfle

(7. def. 1.) Therefore the angle GDB is a right

angle : But FDB is likewise a right angle

:

wherefore the angle FDB is equal to the angle
GDB, the greater to the less, which is iinpos-
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sible: Therefore G is not the centre of the circle ABC: In the same
manner it can be shown that no other point but F is the centre : that is

F is the centre of the circle ABC.
CoK. From this it is manifest that if in a circle a straight line bb»ect

another at right angles, the centre of the circle is in the line which bisects

the other.

PROP. II. THEOR.

If any two points ht taken in the circumference of a circle, the straight line

which joins them shallfall within the circle.

Let ABC be a circle, and \, B any two points in the circumference ;

he straight line drawn from A to B shall fall

within the circle.

Take any point in AB as E ; find D (1. 3.)

Jie centre of the circle ABC ; join AO, DB
and DE, and let DE meet the circumference

in F. Then, because DA is equal to DB, the

angle DAB is equal (5. 1.) to the angle DBA ;

and because AE, a side of the triangle DAE,
is produced to B, the angle DEB is greater

(16. 1.) than the angle DAE ; but DAE is

equal to (he angle DBE; therefore the angle DEB is greater than the
angle DUE : Now to the greater angle the greater side is opposite (19.

1); DB is therefore greater than DE : but BlJ is equal to DF; where*
fore DF is greater than DE, and the point E is therefore witliin the circle.

The same may be demonstrated of any other point between A and B,
therefore AB is within the circle.

Cor. Every point, moreover^ in the production ofAB, is fartherfrem the

centre than the circumference.

PROP. III. THEOR.

If a straight line drawn through the centrf of a circle bisect a straight line m
the circle, which does not pass through the centre, it will cut that line at right
angles ; and if it cut it at right angles, it will bisect it.

Let ABC be a circle, and let CD, a straight line drawn through (he
centre, bisect any straight line AB, which docs not pass through the
centre, in the point F ; it cuu it also at right angles.

Take (!. 3.) E the centre of the circle, and join EA, EB. Then be«
cause .\F is e<|ual k) FB, and FE common to the

two triangles AFE, BFE, there are two sides in the

one e<|ual to two sides in the other : but the baxe
EA in equal to the base EB ; therefore the angle
AFE is equal (8. 1.) to the angle BFE. And
when a straight line standing upon another makes
the adjacent angles equal to one another, each of
them is a right (7. Def. 1.) angle : Therefore each
of the angles AFE, BFE is a right angle ; where-
fore the straight line CD, drawn through the centre
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bisecting AB, which does not pass through the centre, cuts AB at right

angles.

Again, let CD cut AB at right angle^ ; CD also bisects AB, that is, AF
is equal to FB.
The same construction being made, because the radii EA, EB are equal

to one another, the angle EAF is equal (5. 1.) to the angle EBF; and
the right angle AFE is equal to the right angle BFE : Therefore, in the

two triangles EAF, EBF, there are two angles in one equal to two angles

in the other ; now the side £F, which is opposite to one of the equal an-

gles in each, is common to both ; therefore the other sides are equal to

(26. 1.) : AF therefore is equal to FB.
CoR. 1. Hence, the perpendicular through the middle of a chord, passes

through the centre ; for this perpendicular is the same as the one let fall

from the centre on the same chord, since both of them passes through the

middle of the chord.

Cor. 2. It likewise follows, that the perpendicular drawn through the

middle of a chord, and terminated both ways by the circumference of tht circle,

is a diameter, and the middle point of that diameter is therefore the centre of
the circle.

PROP. IV. THEOR.

Ifin a circle two straight lines cut one another, which do not both pass through

the centre, they do not bisect each other.

Let ABCD be a circle, and AC, BD two straight lines in it, Avhicb cut

one another in the point E, and do not both pass through the centre ; AC,
BD do not bisect one another.

For if it is possible, let AE be equal to EC, and BE to ED; if one of the

lines pass through the centre, it is plain that it

cannot be bisected by the other, which does not

pass through the centre. Bui if neither of them
pass through the centre, take (1. 3.) F the centre

of the circle, and join EF : and because FE, a

straight line through the centre, bisects another

AC, which does not pass through the centre, it

must cut it at right (3. 3.) angles ; wherefore
FEA is a right angle. Again, because the

straight line FE bisects the straight line BD, which does not pass ihrouoh
the centre, it must cut it at right (3. 3.) angles ; wherefore FEB is ii right
angle : and FEA was shown to be aright angle : therefore FEA is eoual
to the angle FEB, the less to the greater, which is impossible ; tlicrefore

AC, BD, do not bisect one another.

PROP. V. THEOR.

If two circles cut one another, they cannot have the same centre.

Let the two circles ABC, CDG cut one another in the points B, C
;

they have not the same centre.
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For, if it be possible, let E be their

centre : join EC, and draw any straight line

EFG meeting the circles in F and G : and

because E is the centre of the circle A BC,

CE is equal to EF : Again, because E is

the centre of the circle CDG, CE is equal to

EG : but CE was shown to be equal lo EF,

therefore EF is equal to EG, the less to the

greater, which is impossible : therefore E
is not the centre of the circles, ABC, CDG.

PROP. VI. THEOR.

Iftvoo circles touch one another inlemalljf, they cannot hatM the tame centre

Let the two circles ABC. CDE, touch one another internally in the

point C : they have not the same centre.

For, if they have, let it be F ; join FC, and

draw any straight line FEB meeting the circles

in E anil B ; and because F is the centre of

the circle ABC, CF is equal to FB ; also, be-

cause F is the centre of the circle CDE, CF
is equal to FE : but CF was shown to be equal

to FB ; therefore FE is equal to FB, the less

to the greater, which is impossible : Where-
fore F is not the centre of the circlea ABC,
CDE.

PROP. VII. THEOR.

Ifony potnt be taken in the diameter of a circle which is not the centre, of a*1

the straight lines which can be drawn from it to the circvmferenee, thefreat'

est is that in which the centre is, ana the other part of that diameter is the

least ; and, of any others, that which is nearer to the line passing through

the centre is always greater than one more remote from it ; And from the

game point there can be drawn only two straight lines that are eqmal to one

another, one upon each side of the shortest line.

Let ABCD be a circle, and AD its diameter, in which let any point p

be taken which is not the centre : let the centre be E ; of all the straight

lines FB, FC, FG, &,c. that can be drawn from F to the circumference,

FA is the greatest ; and FD, the other part of the diameter AD, is the

least ; and of the others, FB is greater than FC, and FC than FG.
Join BE, CE, GE ; and because two sides of a triangle aie greater

(20. 1.) than the third, BE, EF are greater than BF ; but AE is equal to

EB ; therefore AE and EF, that is, AF, is greater than BF : Again, be

cause BE is equal to CE, and FE common to the triangles BEF, CEF«
9
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the two sides BE, EF are equal to the two

CE EF; but the angle BEF is greater than

the angle CEF ; therefore the base BF is

greater (24 1 .) than the base FC ; for the same
reason, CF is greater than GF. Again, be-

cause GF, FE are greater (20. 1.) than EG,
and EG is equal to ED ; GF, FE are greater

than ED ; take away the coramon part FE,
and the remainder GF is greater than the re-

mainder FD : therefore FA is the greatest, and

FD the least of all the straight lines from F to

the circumference ; and BF is greater than CF, and CF than GF.
Also there can be drawn only two equal straight lines from the point F

to the circumference, one upon each side of the shortest line FD : at the

point E in the straight line EF, make (23. 1.) the angle FEH equal to the

angle GEF, and join FH : Then, because GE is equal to EH, and EF com-
mon to the two triangles GEF, HEF ; the two sides GE, EF are equal

to the two HE, EF ; and the angle GEF is equal to the angle HEF
;

therefore the base FG is equal (4. 1.) to the base'FH : but besides FH,
no straight line can be drawn i^rom F to the circumference equal to

FG : for, if there can, let it be FK ; and because FK is equal to FG, and
FG to FH, FK is equal to FH ; that is, a line nearer to that which passes

through the centre* is equal to one more remote, which is impossible.

PROP. Vni. THEOR.

If any point be taken without a circle, and straight lines be drawn from it to

the circumference, whereof one passes through the centre ; of those which

fall uponthe concave circumference, the greatest is that which passes through

the centre ; and of the rest that which is nearer to that through the centre

is always greater than the more remote ; But of those whichfall upon the

convex circumference, thi least is that between the point without the circle,

and the diameter ; and of the rest, that which is nearer to the least is al-

ways less than the more remote : And only two equal straight lines can be

drawnfrom the point unto the circumference, one upon each side of the least.

Let ABC be a circle, and D any point without it, from which let the

straight lines DA, DE, DF,DCbe drawn to the circumference, whereof DA
passes through the centre. Of those which fall upon the concave part of the

circumference AEFC, the greatest is AD, which passes through the cen-

tre ; and the line nearer to AD is always greater than the more remote,

viz. DE than DF, and DF than DC ; but of those which fall upon the coti-

vex circumference HLKG, the least is DG, between the point D and the

diameter AG ; and the nearer to it is alwavs less than the more remote,

viz. DK than DL, and DL than DH.
Take (1. 3.) M the centre of the circle ABC, and join ME, MF, MC,

MK, ML, MH : And because AM is equal to ME, if MD be added to

each, AD is equal to EM and MD ; but EM and MD are greater (20. 1 )

han ED : therefore also AD is greater than ED. Again, because ME is

equal to MF, and MD common to the triangles EMD, FMD ; EM, MD
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tre equal lo FM, MD ; but the angle EMD is greater than th* angle

FMU; therefore the base ED is greater

(24. 1.) than the base FD. In like manner

il may be shewn that FD is greater than

CD. Therefore D.\ is the greatest ; and

DE greater than DF. and DF than DC.
And because MK, KD are greater (20.

1 ) than MD, and MK is equal to MG, the

remainder KD is greater (5. Ax.) than the

remainder GD, that is, GD is less than

KD : And because MK, DK sre drawn to

the point K within the triangle MLD from

M, D. the extremities of its side MD ; MK,
KD are less (21.1 .) than .ML, LD, whereof

MK is equal to .ML ; therefore the remain-

der DK is less than the remainder DL

:

In like manner, it may be shewn that DL
is less than Dll : Therefore DG is the

least, and DK less than DL, and DL
than DH.

Also there can be drawn only two equal straight lines from the pomt D
to the circumference, one opun each side of the least i at the point M, in

the straight line MD, make the angle D.MU equal to the angle D.MK, and
join DU ; and because in the triangles K.MD, IJMD, the sTde KM is equal

to the sido U.M, and .MD common to both, and also the angle K.MD equal

ID the angle BMD, the base DK is ec]ual (4. l.)to the base DB. Hut,

bexides DB.no straight line can be drawn from D to the circumference.equal

to DK ; for, if there can, let it be DN ; then, because DN is equal to DK,
and DK etjual to DB, DB is equal to DN ; that is, the line nearer to DG,
the least, equal to the more remote, which has been shewn to be impoaaible.

PROP. I.X. THEOR.

Ifa potnt hi taken vilhin a circle, from which tkertfaU mart tMa» fiM tfusi

ttraight hnejt upon the circumference^ that point u tht centrt oftkt eirett.

Let the point D be taken within the circle ABC, from which there fall

on the circumference more than two equal straight lines, viz. DA, DB, DC,
the point D is the centre of the circle.

For, if not, lot E be the centre, join I)E, and produce it to the circum-

ference in F, G ; then FG is a diameter of

the circle ABC : And because in FG, the di-

ameter of the circle ABC, there is taken the

point D which is not the centre, DG is the

Beateat line from it to the circumference, and
C greater (7. 3.) than DB, and DB than

DA ; but they are likewise equal, which is

impossible : Therefore E is not the centre of
the circle ABC: In like manner it may be
demonstrated, that no other point but D is the

centre : D therefore is the centre.
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. ' PROP. X. THEOR.

One circle cannot cut. another in more than two points.

If It be possible, let the circumference FAB cut the circumference DEF
:n more than two points, viz. in B, G, F ; take the centre K of the circ'o

ABC, and join KB, KG, KF ; and because within the circle DEF there

is taken the point K, from which more than two

equal straight lines, viz. KB, KG, KF, fall on

the circumference DEF, the point K is (9. 3.)

the centre of the circle DEF ; but K is also the

centre of the circle ABC ; therefore the same
point is the centre of two circles (that cut one

another, which is impossible (5. 3.). There-

fore one circurtiference of a circle cannot cut

another in more than two points.

PROP. XI. THEOR.

If two circles touch each other internally , the straight line which joins their

centres being produced, will pass through the point of contact.

Let the two circles ABC, ADE, touch each other internally in the pomt
A, and let F be the centre of the circle ABC, and G the centre of the cir-

cle ADE ; the straight line which joins the cen-

tres F, G, being produced, passes through the

point A.

For, if not, let it fall otherwise, if possible, as

FGDH, and join AF, AG : And because AG,
GF are greater (20. 1.) than FA, that is, than

FH, for FA is equal to FH, being radii of the

same circle ; take away the common part FG,
and the remainder AG is greater than the re-

mainder GH. But AG is equal to GD, there-

fore GD is greater than GH ; and it is also less,

which is impossible. Therefore the straight line

which joins the points F and G cannot fall otherwise than on the point

A ; that is, it must pass through A.

Cor. 1. If two circles touch each other internally, the distance be-

tween their centre must be equal to the difference of their radii : for the

circumferences pass through the same point in the line joining the centres.

CoR. 2. And, conversely, if the distance between the centres be equal

tO the difference of the radii, the two circles will touch each other inter-

nally.
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PROP. XII. THEOR.

If t^ circles tottch each other extemaUy^ the straight line which joins thttf

centres will pass through the point of contact.

liet the two circles ABC, ADE, touch each other externally in the point

A ; aod let F be the centre of the circle ABC, and G the centre of ADE ;

Uie straight line which joins the points F, G shall pass through U^e point

of contact.

For, if not, let it pass otherwise, if possible, FCDG, and join FA, AG :

and because F is the centre of the circle ABC, AF is equal to FC : Also

because G is the centre of the

circle, ADE, AG is equal to

GD. Therefore FA, AG are

equal to FC, DG ; wherefore

the whole FG is greater than

FA, AG ; but it is also less

(20. 1 .), which is innossible

:

Therefore the straight line

wliich joins the points F, G
cannot pass otherwise than
through the point of contact A ; that is, it pass«s through A.

Coa. Hence, if two circles touch each other externally, the distance
between their centres will be equal to the sum of their radii.

And, conrersely, if the distance between the centres be equal to the stun

•f tha radii, the two circles will touch each other externally.

PROP. XIII. THEOR.

One etrele cannot touch another in more points than one, whttker it tomckes
it on the inside or outside.

For, if it be possible, let the circle EBF tonch tha circle AbC in moca
poinu than one, and first on the inside, in the points B. D ; join BD, and
draw (10. 11. I.) GH, bisecting BD at right angles : Therefore bacaata
*he points B, D are in the circumferenca of each of tha circles, tha straifhi

line BD falls within each (2. 3) of them : and therefore their centres are
(Cor. 1. 3.) in the straight line GU which bisects BD ax right anglaa:
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therefore GH passes through the point of contact (11. 3 ), but it does

not pass through it, because the points B, D are without the straight line

GH, which is absurd: therefore one circle cannot touch another in tlip

inside in more points than one.

Nor can two circles touch one another on the outside in more than one

point: For, if it be possible, let the circle ACK
touch the circle ABC in the points A, C, and join

AC : therefor?,, because the two points A, C are

in the circumference of the circle ACK, the straight

line AC which joins them shall fall within the

circle ACK: And the circle ACK is without the

circle ABC : and therefore the straight line AC is

also without ABC ; but, because the points A, C
are in the circumference of the circle ABC, the

straight line AC must be within (2. 3.) the same
circle, which is absurd : therefore a circle cannot

touch another on the outside in more than one

point : and it has been shewn, that a circle cannot

touch another on the inside in more than one point.

PROP. XIV. THEOR.

Equal straight lines in a circle are equally distantfrom the centre ; and those

which are equally distantfrom the centre, are equal to ono another.

Let the straight lines AB, CD, in the circle ABDC, be equal to one

another : they are equally distant from the centre.

Take E the centre of the circle ABDC, and from it draw EF, EG, per-

pendiculars to AB, CD
;
join AE and EC. Then, because the straight

line EF passing through the centre, cuts the

straight line AB, which does not pass through

the centre at right angles, it also bisects (3.

3.) it : Wherefore AF is equal to FB, and

AB double of AF. For the same reason,

CD is double of CG : But AB is equal to

CD ; therefore AF is equal to CG : -And be-

cause AE is equal toEC, the square of AE is

equal to the square of EC : Now the squares

of AF, FE are equal (47. 1.) to the square

of AE, because the angle AFE is a right angle ; and, for the like reason,

the squares of EG, GC are equal to the square of EC : therefore the

squares of AF, FE are equal to the squares of CG, GE, of which the

square of AF is equal*to the square of CG, because AF is equal to CG ;

therefore the remaining square of FE is equal to the remaining square of

EG, and the straight line EFis therefore equal to EG : But straight lines

in a circle are said to be equally distant from the centre when the perpen-

diculars drawn to them from the centre are equal (3. Def. 3.) : therefore

AB, CD are equally distant from the centre.

Next, if the straight lines AB, CD be equally distant from the centre,

hat is, if FE be equal to EG, AB is eqoal to CD. For, the same con
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Btruction l>eing made, it may, as before, be demonstrated, that AB is double

of AF, and CD double of CG, and that the squares of EF, FA arc equal

to the squares of EG, GO ; of which the square of FE is equal to the

square of EG, because FE is equal to EG : therefore the remaining square

of AF is equal to the remaining square of CG ; and the straight line AF
is therefore equal to CG : But AB is double cf AF, aitd CD double of

CG ; w herefore AB is equal to CD.

PROP. XV. THEOR.

The diameter is the greatest straight line in a cucU ; and of all othen,

tnal which is nearer to the centre ij always greater than one more remote ;

and the greater is nearer to the centre than the less.

Let ABCD be a circle, of which the diame-

ter is AD, and the centre E ; and let BC be near-

er to the centre than FG ; AD is greater than

any straight line BC which is not a diameter, and

BC greater than FG.
From the centre draw EH, EK perpendiculars

to BC, FG, and join EB, EC, EF ; and because

AE is equal to EB, and ED to EC, AD is equal

to EB, EC : But EB. EC are greater (2C. 1.)

than BC ; wherefore, also, AD is greater than

BC.
And, because BC is nearer to the centre than FG, EH is less (4. Dof.

3.) than EK ; But, as was demonstrated in the preceding, BC is doublu
of BH, and FG double of FK, and the squares of EH, HB are equal to

the squares of EK, KF, of which the square of EH is less than the square
of EK, because EH is less than EK ; therefore the square ofBH is greater
than the square of FK, and the straight line BH greater than FK : and
therefore BC is greater than FG.

Next, let BC be greater than FG ; BC is nearer to the centre than FO

:

that is, the same construction being made, EH is less than EK ; because
BC is greater than FG, BH likewise is greater than KF : but the squares
of BH, HE are equal to the squares of FK, KE, of which the square of

BH is greater than the squire uf FK, because BH is greater thnn FK ;

therefore the s<]uare of EH is less than the square of EK. and the straight

line EH less than EK.
CoR. The short4>r the chord is, tlie farther it is from the centre ; and.

conrersely, the farther the chord is from the centre, the shorter it is.

PROP. XVI. THEOR.

Th9 straight line drawn at right angles to the diameter of a circle, from the

extremity of it,falls u-ithout the circle ; and no straight line can be drawn
between that straight line and the circumference, from the extremity of the

diameter, so as not to cut the circle.

Let ABC be a circle, the centre of which is D, and the diameter AB
and let AE be drawn firom A perpendicular to AB, .\E shall fall without
the circle.
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Tn AE take any point F, join DF and let DF meet the circle in C.
Because DAF is a right angle, it is greater

than the ahgle AFD (32. 1.) ; but the greater

angle of any triangle is subtended by the

greater side (19. 1.), therefore DF is greater

than DA : now DA is equal to DC, there-

fore DF is greater than DC, and the point

F is therefore without the circle. And F
IS any point whatever in the line AE, there-

fore AE falls without the circle.

Again, between the straight line AE and
the circumference, no straight line can be

drawn from the point A, which does not cut

the circle. Let AG be drawn in the angle DAE : from D draw DH at

right angles to AG ; and because the angle

DHA is a right angle, and the angle DAH
less than a right angle, the side :DH of the

triangle DAH is less than the side DA (19.

1 .). The point H, therefore, is within the cir-

cle, and therefore the straight line AG cuts

^he circle.

CoR. 1. From this it is manifest, that the -n
j

straight line which is drawn at right angles to

the diameter of a circle from the extremity of

it, touches the circle ; and that it touches it

only in one point ; because, if it did meet the

circle in two, it would fall within it (2. 3.).

Also it is evident that there can be but one straight line which touches the

circle in the same point.

CoR. 2. Hence, a perpendicular at the extremity of a diameter is a tan-

gent to the circle ; and, conversely, a tangent to a circle is perpendicular

to the diameter drawn from the point of contact.

Cor. 3. It follows, likewise, that tangents at each extremity of the

diameter are parallel (Cor. 28. B. 1.); and, conversely, parallel tangents

are both perpendicular to the same diameter, and have their points of con-

tact at its extremities.

PROP. XVH. PROB.

To drato a straight line from a given point either without or in the circum'

ference, which shall touch a given circle.

First, let A be a given point without the given circle BCD ; it is re-

quired to draw a straight line from A which shall touch the circle.

Find (1. 3.) the centre E of the circle, and join AE ; and from the cen-

tre E, at the distance EA, describe the circle AFG ; from the point D
draw (11. 1.) DF at right angles to EA, join EBF, and draw AB. AB
touches the circle BCD.

Because E is the centre of the circles BCD, AFG, EA is equal to

RF, and ED to EB ; therefore the two sides AE EB are equal to tbs
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two FE, ED, and they contain the angle at E common to the two trian-

gles AEB, FED; therefore the base DF
is equal to the base AB, and the triangle

FED to the triangle AEB, and the other

angles to the other angles (4. 1 .) ; there- Cy
fore the angle EBA is equal to the angle

EDF; but EDF is a right angle, where-

fore EBA is a right angle ; and £B is a

line drawn from the centre : but a straight

line drawn from the extremity of a diame-

ter, at right angles to it, touches the circle

(1 Coc 16.3.): therefore AB touches the

circle ; and is drawn from the given point A.

But if the given point be in the circumference of the circle, as the point

D, draw DE to the centre E, and DF at right an^cs to DE ; DF touches

the circle (1 Cor. 16. 3.)

SCHOLIUM.

When the point A lies without the circle, there will evidently bo always
two equal tangents passing through the point A. For, by producing the

tangent FD till it meets the cireumference AG, and joining E and the poin

of intersection, and also A and the point where this last line will intersect

the circumference DC ; there will be formed a right angled triangle equal

to ABE (46. 1.).

PROP. XVIII. THEOR.

if a gtraigkt Urn* touch a eirtld, the straight line drawn from tht etnir* to

the point of contact, u perpendicular to the line ioucking the eirele.

Let the straight line DE touch the circle ABC in the point C ; take

the centre F, and draw the straight line FC : FC is perpendicular to DE.
For, if it be not, from the point F draw FBGpofp«tKiicular to DC ; and

because FGC is a right angle, GCF must
be ( 17. 1.) an acute angle ; and to the great-

er angle the greater side (19. 1.) is oppo-

site ; therefore FC is greater than FG

;

but FC is equal to FB ; therefore FB is

greater than FG, the less than the greater,

which is impossible ; wherefore FG is not

perpendicular to DE : in the same manner
it may be shewn, that no other line but FC
can be perpendicular to DE ; FC is there»

fore perpendicular to DE.

10
O B



74 ELEMENTS

PROP. XIX. THEOR.

If a straight line touch a circle, and from the point of contact a straight line

* be drawn,at right angles to the touching line, the centre of the circle is in

that line.

Let the straight line DE touch the circle ABC, in C, and from C let

CA bo drawn at right angles to DE ; the centre of the circle is in CA.
For, if not, let F be the centre, if possible,

and join CF. Because DE touches the cir-

cle ABC, and FC is drawn from the centre

to the point of contact, FC is perpendicular

(18. 3.) to DE ; therefore FCE is a right

angle ; but ACE is also a right angle

;

therefore the angle FCE is equal to the an-

gle ACE, the less to the greater, which is

impossible ; Wherefore F is not the centre

of the circle ABC : in the same manner it

may be shewn, that no other point which is

not in CA, is the centre ; that is, the centre

is in CA.

PROP. XX. THEOR

The angle at the centre of a circle is double of the angle at the circumjer-

ence, upon the same base, that is, ^pon the same part of the circumfer

ence.

Let ABC be a circle, and BDC an angle at the centre, and BAC an

angle at the circumference which have the same circumference BC for

the base; the angle BDC is double of the angle BAC.
First, let D, the centre of the circle, be within the angle BAC, and join

AD, and produce it to E : because DA is equal

to DB, the angle DAB is equal (5. 1.) to the ^^ J\.

angle DBA : therefore the angles DAB, DBA
together are double of the angle DAB ; but the

angle BDE is equal (32. 1.) to the angles DAB,
DBA ; therefore also the angle BDE is double

of the angle DAB ; for the same reason, the an-

gle EDC is double of the angle DAC : there-

fore the whole angle BDC is double of the whole
angle BAC.

Again, let D, the centre of the circle, be
without the angle BAC ; and join AD and pro-

duce it to E. It may be demonstrated, as in

the first case, that the angle EDC is double
of the angle DAC, and that EDB, a part of
the first, is double of DAB, a part of the

other ; therefore the remaining angle BDC is

double of the remaining ansle Bx\C.
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PROP. XXI. THEOR.

The angles tn the same segment of a circle are equal to one another.

Lei ABCD be a circle, and BAD, BED
angles in the same segment BAED: the an-

gles B.\D, BED are equal to one another.

Take F the centre of the circle ABCD

:

And, first, let the segment B.\ED be greater

than a semicircle, and join BF, FD : and be-

cause the angle BFD is at the centre, and the

angle BAD at the circumference, both having
the same part of the circumference, viz. BCD,
fur their base; therefore the angle BFD ia

double (20. 3.) of the angle BAD: for the

same reason, the angle BFD is double of the

angle BED : therefore the angle BAD ia equal

to the angle BED.
But, if the segment B.\ED be not greater

than a semicircle, let BAD, BED be angles

ia it, these also are equal to one another.

Draw A F to the centre, and produce to C, and
join CE : therefore the segment BADC is

greater than a aemicirclo ; and the angles in

it, B.\C, BEC are equal, by the first case:
for the same reaaon, because CBED is greai>

er than a semicircle, the angles CAD, CED
sre equal ; therefore the whole angle BAD ia

equal to the whole angle BCD.

PROP. XXII. THEOR.

7^ opposite angles of anf <ptadril<itef<d figure described in a drelt^ a»9

together equal to two right angles.

I^et ABCD be a quadrilateral figure in the circle ABCD; any two of
its opposite angles are together equal to two right angles.

Join AC, BD. The angle CAB ia eqiul (21. 3.) to the angla
CDB, because they are in the same segmeut
BADC, and the angle ACB ia equal to the an-
gle ADB, because they are in the same seg>

moot ADCB ; therefore the whole angle ADC
is equal to the anjjles CAB, .\CB: to each of
thene equals add the angle ABC ; and the an-

Hfles ABC, ADC, are equal to the angles ABC.
CAB, BCA. But ABC, CAB, BCA are equal
U> two right angles (3*2. 1.) ; therefore also the
Bglea ABC, ADC are equal to two right an-
gles; in the same manner, the angles BAD,
DCB may be shewn to be equal to two right anglaa.
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Cor. 1. If any side of a quadrilateral be produced, the exterior angle

will be equal to the interior opposite angle.

Cor. 2. It follows, likewise, that a quadrilateral, of which the op-

posite angles are not equal to two right angles, cannot be inscribed in a

circle.

PROP. XXIII. THEOR.

Upon the same straight line, and upon the same side of it, there cannot he

two similar segments of circles, not coinciding with one another.

If it be possible, let the two similar segments of circles, viz. ACB, ADD,
be upon the same side of the same straight line AB, not coinciding with

one another ; then, because the circles ACB, ADB, cut one another in

the two points A, B, they cannot cut one another in any other point (10.

3.) : one of the segments must therefore fall

within the other: let ACB fall within ADB,
draw the straight line BCD, and join CA, DA :

and because the segment ACB is similar to the

segment ADB, and similar segments of circles

contain (9. def. 3.) equal angles, the angle

ACB is equal to the angle ADB, the exterior

to the interior, which is impossible (16. 1.).

PROP. XXIV. THEOR.

Similar segments of circles upon equal straight lines are equal to one another.

Let AEB, CFD be similar segments of circles upon the equal straight

lines AB, CD ; the segment AEB is equal to the segment CFD.
For, if the segment AEB be applied to the segment CFD, so as the

point A be on C, and the

straight line AB upon CD,
the point B shall coincide

with the point D, because
AB is equal to CD : there- ^^^_-___
fore the straight line AB A, B C X)
coinciding with CD, the segment AEB must (23. 3.) coincide with the
segment CFD, and therefore is equal to it.

PROP. XXV. PROB. *

A segment of a circle being given, to describe the circle of which it is the

segment.

Let ABC be the given segment of a circle ; it is required to describe
the circle of which it is the segment.

Bisect (10. 1.) AC in D, and from the point D draw (11. 1.) DB at
right angles to AC, and join AB : First, let the angles ABD, BAD bft
equal to one another; then the straight line BD is equal (6. 1.) to DA,
and therefore to DC ; and because the three straight lines DA, DB, DC,
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are all equal ; D is the centre of the circle (9. 3.) ; from the centre D. at

ihe distance of any of the tlu-ee DA, DB, DC, describe a circle ; this shall

pass through the other points ; and the circle of which ABC is a segment

B

is described : and because the centre D is in AC, the segment ABC is

semicircle. Next, let the angles ADD, BAD be unequal ; at the point A, ii

the straight line AB, make (23. 1.) the angle BAE equal to the angle ABD
and produce BD, if necessary, to E, and join EC : and because the angle

ABE is equal to the angle 6aE, the straight line BE is equal (6. 1.) to

EA : and because AD is equal to DC, and DE common to the triangles

ADE, CDE, the two sides AD, DE are equal to the two CD, DE. each

to each ; and the angle ADE is equal to the angle CDE, for each of them
is a right angle : therefore the base AE is equal (4. 1.) to the base EC :

but AE waa shewn to be equal to EB, wherefore also BE is eqtud to EC :

and tne three straight lines AE, EB, EC are therefore equal to one another;

wherefore (9. 3.) E is the centre of the circle. From the centre E, at

the distance of any of the three AE, ED, EC, describe a circle, this shall

pass through the other points ; and the circle of which ABC is a segment

is described : also, it is evident, that if the angle ABD be greater than the

angleBAD, the centre E (alb without the segment ADC, which therefore

is less than a semicircle ; but ifthe an^le ADD be lees than DAD, the cen-

tre E falls within the segment ADC, which is therefore greater than a semi-

circle : Wl^erefore, a segment of a circle being given, the circle is de*

scribed of which it is a segment.

PROP. XXVI. THEOR.

7n equal circles, equal tmgles stand upon equal ores, wAetker they be at tk»

centres or circumferences.

Let ADC, DEF be equal circles, and the equal angles BGC, EHF at

their centres, and DAC, EDF at their circumferences : the arc DKC is

equal to the arc ELF.
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Join BC, EF ; and because the circles ABC, DEF are equal, the straight

lines drawn from their centres are equal : therefore the two sides BG,
GC, are equal to the two EH, HF : and the angle at G is equal to the an-

gle at H ; therefore the base BC is equal (4. 1.) to the base EF : and be-

cause the angle at A is equal to the angle at D, the segment BAG is similar

(9. def. 3.) to the segment EDF ; and they are upon equal straight lines

BC, EF ; but similar segments of circles upon equal straight lines are

equal (21. 3.) to one another, therefore the segment BAG. is equal to ihe

segment EDF : but the whole circle ABC is equal to the whole DEF ;

therefore the remaining segment BKC is equal to the remaining segment

ELF, and the arc BKC to the arc ELF.

PROP. XXVIL THEOR..

In equal circles, the angles which stand upon equal arcs are equal to one

another, whether they be at the centres or circumferences.

Let the angles BGC, EHF at the centres, and BAG, EDF at the cir-

cumferences of the equal circles ABC, DEF stand upon the equal arcs

BC, EF : the angle BGC is equal to the angle EHF, and the angle BAG
to the angle EDF.

If the angle BGC be equal to the angle EHF, it is manifest (20. 3.)

that the angle BAG is also equal to EDF. But, if not, one of them is the

greater : let BGC be the greater, and at the point G, in the straight lino

BG, make the angle (23. 1.) BGK equal to the angle EHF. And because

equal angles stand upon equal arcs (26. 3.), when they are at the centre,

the arc BK is equal to the arc EF : but EF is equal to BC ;
therefore

also BK is equal to BC, the less to the greater, which is impossible. There-

fore the angle BGC is not unequal to the angle EHF ; that is, it is equal

to it : and the angle at A is half the angle BGC, and the angle at D half

of the angle EHF ; therefore the angle at A is equal to the angle at D.

PROP. XXVHL THEOR.

In equal circles, equal straight lines cut off equal arcs, the greater equal to

the greater, and the less to the less.

Let ABC, DEF be equal circles, and EC, EF equal straight lines in

them, which cut off the two greater arcs BAG EDF, and the two less
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BGC, E(IF : the greater BAG is equal to the greater EDF, and the lesa

BGC to the less EHF.
Take (1. 3.) K, L, the centres of the circles, and join BK, KG, EL,

LF ; and because the circles are equal, the straight lines from their centres

• A

are equal ; therefore BK, KG are equal to EL, LF ; but the base BC is

also equal to the base EF ; therefore the angle BKG is equal (8. 1.) to the

angle ELF : and equal angles stand upon equal (26. 3.) arcs, when they
are at ihe centres; therefore the arc BGG is equal to the arc EHF.
But the whole circle ABG is equal to the whole EDF ; the remaining part,

therefore, of the circumference viz. BAG, is equal to the remaining part

EOF.

PROP. XXIX. THEOR.

In etptal circles equal arcs art subtended by equal straight Unss.

Xm ABC. DEF be equal circles, and lei the arcs BGG. EHF also be
equal ; and join BG, £F : the straight line BC is equal to the straight line

EF.
Take (1 . 3.) K, L the centres of the circles, and join BK, KG, EL. LF

:

and because the arc BGC is equal to the arc EHF. the angle BKC is

equal (27. 3.) to the angle ELF : also because the circles ABG, DEF are
equal, their radii are equal : therefore BK, KG are equal to £L, LF : aad

they contain equal angles ; therefore the base BG b equal (4. 1.) to &•
bane EF.
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PROP. XXX. THEOR.

To bisect a given arc, that is, to divide it into two equal parts.

Let ADB be the given arc ; it is required to bisect it.

Join AB, and bisect (10. 1.) it in C ; from the point C draw CD at right

angles to AB, and join AD, DB : the arc ADB is bisected in the point D.

Because AC is equal to CB, and CD common to the triangle ACD,
BCD, the two sides AC, CD are equal to the

two BC, CD ; and the angle ACD is equal to

the angle BCD, because each of them is a

right angle : therefore the base AD is equal

(4. 1.) to the base BD. But equal straight

lines cut off equal arcs, (28. 3.) the greater .iJ- C B
equal to the greater, and the less to the less ; and AD, DB are each of
them less than a semicircle, because DC passes through the centre (Cor.
1. 3.) ; wherefore the arc AD is equal to the arc DB : and therefore the
g^ven arc ADB is bisected in D.

SCHOLIUM.

By the same construction, each of the halves AD, DB may be divided

into two equal parts ; and thus, by successive subdivisions, a given arc

may be divided into four, eight, sixteen, &c. equal parts.

PROP. XXXL ' THEOR.

In a circle, the angle in a semicircle is a right angle ; but the angle in a seg-

ment greater than a semicircle is less than a right angle ; and the angle in

a segment less than a semicircle is greater than a right angle.

Let ABCD be a circle, of which the diameter is BC, and centre E
;

draw CA dividing the circle into the segments ABC, ADC, and join BA,
AD, DC ; the angle in the semicircle BAC is a right angle ; and the an-

gle in the segment ABC, which is greater than a semicircle, is less than a

right angle ; and the angle in the segment ADC, which is less than a semi-

circle, is greater than a right angle.

Join AE, and produce BA to F ; and because BE is equal to EA, the

angle EAB is equal (5. 1.) to EBA : also
.

because AE is equal to EC, the angle EAC
is equal to EGA ; Avherefore the whole an-

gle BAC is equal to the two angles ABC,
ACB. But FAC, the exterior angle of the

triangle ABC, is also equal (32. 1.) to the

two angles ABC, ACB; therefore the an-

gle BAC is equal to the angle FAC," and
each of them is therefore a right angle (7.

def. 1.) ; wherefore the angle BAC in a semi-
circlu is a right angle.
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And because the two angles ABC, BAG of the triangle ABC are to-

gether less (17. 1.) than two right angles, and BAG is a right angle, ABC
nast be less than a right angle ; and therefore the angle in a segment

ABC, greater than a semicircle, is less than a right angle.

Also because ABCD is a quadrilateral figure in a circle, any two ofvM
oppisite angles are equal (22. 3.) to two right angles ; therefore the augles

A:{ J, ADC are equal to two right angles ; and ABC is less than a right

angle ; wherefore the other ADC is greater than a right angle.

CoR. From this it is manifest, that if one angle of a triangle be equal to

the other two, it is a right angle, because the angle adjacent to it is equal

to the same two ; and when the adjacent angles are equal, they are right

angles. •

PROP. XXXII. THEOR.

// a straight lint touch a circle, and from the point of contact a straight

Um be drawn cutting the circle, the angles made by this line wtth the lint

which touches the circle, s/tall be equal to the angles in the alternate seg'

ments of the circle.

Let the straight line EF touch the circle ABCD in B, aad from the

point B let the straight line BD be drawn cutting the circle : the angles

which BD makes with the touching line EF shall be equal to the angles

in the alternate segments of tlie circlo : that is, the angle FBD is equal to

the angle which is in the segment DAB, and the angle DB£ to the angle

in &e segment BCD.
From the point B draw (11. 1.) BA at right angles to EF, and take any

point C in the arc BD, and join .\D, DC, CB ; and because the straight

line EF touches the circle ABCD in the |)oint B, and B.\ is drawn at righl

angles to the touching lino, from the point of contact B, the centre of um
circle is (19. 3.) in BA ; therefore the an-

gle ADB in a semicircle, is a right an-

gle (31. 3.), and consquently the otltcr two
angles, BAD, ABI), are e<|u.il (32. 1.) to

a right angle ; but .\BF is likewise a right

angle ; therefore the angh' ABF is equal

to the angles BAD, AHD : uke from
these equals the common angle ABD.
and there will remain the angle DBF
equal to the angle BAD, which is in the

alternate segment of the circle. And be>

cause ABCD is a quadrilateral figure in

a circle, the opposite angles BAD, BCD are equal (23. 3.) to two right

angles ; therefore the angles DBF, DUE, being likewise equal (13. 1.) to

two right angles, are equal to the angles BAD, BCD ; and DBF has been
proved equil to B.\D : therefore the remaiuing angle DBE is equal to the
angle BCD in the alternate segment of the circle.

11
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PROP. XXXIII. PROS.

Upon a given straight line to describe a segment of a circle, containing an

angle equal to a given rectilineal angle.

Let AB be the given straight line, and the angle at C the given recti-

lineal angle ; it is required to describe upon the given straight line AB a

segment of a circle, containing an angle equal to the angle C.

First, let the angle at C be a right angle ; bisect (10. 1.) AB in F, and

fr6m the centre F, at the distance FB,
describe the semicircle AHB ; the an-

gle AHB being in a semicircle is (31.

3.) equal to the right angle at C.

But if the angle C be not a right an-

gle at the point A, in the straight line

AB, make (23. 1.) the angle BAD equal

to the angle C, and from the point A draw (11. 1.) AE at right angles to

AD ; bisect (10. 1.) AB in F, and

from F draw (11. 1.) FG at right

angles to AB, and join GB : then

because AF is equal to FB, and

FG common to the triangles AFG,
BFG, the two sides AF, FG are

equal to the two BF, FG ; but the

angle AFG is also equal to the ^V
angle BFG ; therefore the base AG
is equal (4. 1.) to the base GB ; and

the circle described from the centre

G, at the distance GA, shall pass

through the point B ; let this be the circle AHB: and because from the

point A the extremity of the diameter AE, AD is drawn at right angles to

AE, therefore AD (Cor. 1. 16. 3.) touches

the circle ; and because AB, drawn from
the point of contact A, cuts the circle,

the angle DAB is equal to the angle in

the alternate segment AHB (32. 3.) ;

but the angle DAB is equal to the angle

C, therefore also the angle C is equal to

the angle in the segment AHB : Where-
fore, upon the given straight line AB
the segment AHB of a circle is describ-

ed which contains an angle equal to the given angle at C.
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PROP. XXXIV. PROB.

To cut off a segmentfrom a given circle which shall contain an angle equ^
to a given rectiiineal angle.

Let ABC be the given circle, and D the given rectilineal angle ; it is

required to cut off a segment from the circle ABC that shall contain an

angle equal to the angle D.

Draw (17. 3.) the straight line EF touching the circle ABC in the point

B and at the point B, in the straight

line BF make (23. 1.) the angle FBC
equal to the angle D ; therefore, be*

cause the straight line EF touches

the circle ABC, and BC is drawn
from the point of contact B, the an-

gle FBC is equal (32. 3.) to the an-

gle in the alternate segment BAC ;

but the angle FBC is equal to the an-

gle D : therefore the angle in the

•egment B.\C is equal to the angle

D : wherefore the segment BAC is cut off from tlM giren circle ABC
containing an angle equal to the given angle D.

PROP. XXXV. THEOR.

If two straight lines ttithin a circle cut one another, tk§ rectangle eontttineif

by the segments of one of them is equal to the rectamgU contained by ttm

segments of the other.

Let the two ntraight line* AC, BD, within the circle ABCD, cut on«
another in the point E ; the rectangle contained hy AG, £C is equal u.

the rectangle contained by BE, ED.
If AC, BD pass each of them through the ceo-

nre, so that E is the centre, it is evident that A E,

EC, BE, ED, being all equal, the rectangle AE.
EC is likewise equal to the rectangle BE. ED.

But let one of them BD pass through the cen- 3|
tre, and cut the other AC, which does not pass
through the centre, at right angles in the point E ;

then, if BD be bisected in F, F is the centre of
the circle ABCD

;
join AF : and because BD, which

centre, cuu the straight line AC, which does not
pass through the centre at right angles, in E, AE,
EC are equal (3. 3.) to one another ; and because
the straight line BD is cut into two equal parts

in the point F, and into two unequal in the point
E, BE.ED (6. 2.) -f EF» = FB' = AP. But
AF' = AE» 4- (47. I.) EF', therefore BE.ED -f
EF», = AE' + EF*, and taking EF' from each,
BE.ED= AE'= AE.EC.

Next, let BD, which passes through the centre,

cut the other AC, which does not pass through
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the centre, in E, but not at right angles ; then, as before, if BD be bisect-

ed in F, F is the centre of the circle. Join AF, j^
and from F draw (12. 1.) FG perpendicular to

AC ; therefore AG is equal (3. 3.) to GC ; where-

fore AE.EC + (5. 2.) EG2 = AG2, and adding

GF2 to both, AE.EC+ EG2+GF2=AG2+GF2.
Now EG2+GF2=EF2, and AG2+GF2=AF2 ; , ^ , ,^
therefore AE.EC+ EF2=AF2=FB2. But FB^ A\ ir^^'^v '^
=BE.ED+ (5. 2.) EF2, therefore AE.EC+ EF2
=BE.ED+EF2, and taking EF^ from both, AE.
EC= BE.ED.

Lastly, let neither of the straight lines AC,
BD pass through the centre : take the centre F,

and through E, the ijitersection of the straight

linos AC, DB, draw the diameter GEFH : and
because, as has been shown, AE.EC= GE.EH,
and BE.ED= GE.EH; therefore AE.EC= BE.
ED.

B G
PROP. XXXVL THEOR.

Iffrom any 'point without a circle two straight lines be drawn, one of which
cuts the circle, and the other touches it ; the rectangle contained by the whole

line which cuts the circle, and the part of it without the circle, is equal to the

square of the line which touches it.

Let D be any point without the circle ABC, and DCA, DB two straight

lines drawn from it, of which DCA cuts the circle, and DB touches ii
•

the rectangle AD.DC is equal to the square of DB.
Either DCA passes through the centre, or it

does not ; first, let it pass through the centre E,
and join EB ; therefore the angle EBD is a
right angle (18. 3.) : and because the straight

line AC is bisected in E, and produced to the
point D, AD.DC+EC2=ED2 (6. 2.). But
EC = EB, therefore AD.DC + EB2 = ED2.
Now ED2=- (47. 1.) EB2-(- BD2, because EBD
is a right angle ; therefore AD.DC + EB^ =
EB2 4- BD2, and taking EB2 from each, AD.DC
= BD2.

But, if DCA does not pass through the cen-
tre of the circle ABC, take (1.3.) the centre E,
and drawEF perpendicular (12. 1.) to AC, and
join EB, EC, ED ; and because the straight

line EF, which passes through the centre, cuts
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die straight line AC, which does not pass

through the centre, at right angles, it likewise

bisects it (3. 3.) ; therefore AF is equal to FC

;

and because the straight line AC is bisected in

F, and produced to D (6. 2.), AD.DC+ FC>=
FD^; add FE' to both, then AD.DC+FC+
FE»=FD'+FE«. But (47. 1.) EC»=FC»+
FE», and ED»= FD»+FE«, because DFE is

aright angle; therefore AD.DC+ EC»=ED>.
Now, becatise EBD is a right angle, ED'=:
£B>+BD>sEC^+BD>, and therefore, AD.
nC+EC»=EC'+BD», and AD.DC= BD».

CoR. 1. If from any point without a circle,

there be drawn two straight lines cutting it^ as

AB, AC, the rectangles conuined by the whole

lines and the parts of them without tlie circle,

are equal to one another, riz. BA.AE=CA.
AF ; for each of these rectangles is equal to

the square of the strai^ line A D, which touch*

es the circle.

Co a. 2. It follows, moreorer, that two tan-

geiUs drawnfrom tke same point art e^uai.

Coa. 3. And since a radius drawn to the

point of contact is peipendicular to the tangent,

it follows that tfu angle includtd ht/ two tangents,

drawn from the same point, is bisetted by a line

drawn from the centre of the circle to that point

;

forthis line forms the hypotenuse common to

two equal right angled triangles.

PROP. XXXVII. THEOR.

Iffrom a point without a circle there be drawn two straight lines, one of

which cuts the circle, and the other meets it ; if tke rectangle contained by

the whole line, which cuts the circle, and the part of it without the circle,

be equal to the square of the line which meets it, the line which meets shall

touch the circle.

Let any point D be taken without the circle ABC, and from it let two
straight lines DC A and DB be drawn, of which DCA cuts the circle, ami

DB meets it ; if the rectangle AD.DC, be equal to the square of DB, DB
touches the circle.

Draw (17. 3.) the straight line DE touching the circle ABC ; find ihf

centre F, and join FE, FB, FD ; then FED is a right angle (18. 3.) : an<I

because DE touches the circle ABC, and DCA cuts it, iho rectanc;le A I)

DC is equal (36. 3.) to the square of DE ; but the rectangle .\D.I)C is

by hypothesis, equal to the square of DB : therefore the square of DE is
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equal to the square of DB ; and the straight line

DE equal to the straight line DB : but FE is

•qual to FB, wherefore DE.EF are equal to DB,
BF ; and the base FD is common to the two trian-

gles DEF, DBF; therefore the angle DEF is

equal (8. 1.) to the angle DBF; and DEF is a

right angle, therefore also DBF is a right angle :

but FB, if produced, is a diameter, and the straight

line which is drawn at right angles to a diame-

ter, from the extremity of it, touches (16. 8.) the

circle : therefore DB touches the circle ABC.

ADDITIONAL PROPOSITIONS.

PROP. A. THEOR.

A diameter divides a circle and its circumference into two equalparts ; and^con*

versely, the line which divides the circle into two equal parts is a diameter

Let AB be a diameter of the circle

AEBD, then AEB, ADB are equal in

surface and boundary.

Now, if the figure AEB be applied to

the figure ADB, their common base AB
retaining its position, the curve line AEB
must fall on the curve line ADB ; other-

wise there would, in the one or the other,

be points unequally distant from the cen-

tre, which is contrary to the definition of

a circle.

Conversely. The line dividing the circle into two equal-parts is a diameter

For, let AB divide the circle into two equal parts ; then, if the centre is

not in AB, let AF be drawn through it, which is therefore a diameter, and
consequently divides the circle into two equal parts ; hence the portion

AEF is equal to the portion AEFB, which is absurd.

Cor. The arc of a circle whose chord is a diameter, is a semicircura-

ference, and the included segment is a semicircle.

PROP. B. THEOR.

Through, three given points which are not in the same straight line, one cir-

cumference of a circle may be made to pass, and but one.

Let A, B, C, be three points not in the same straight line : they shall

all lie in the same circumference of a circle.
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For, let the distances AB, BC b« bisected by the perpendiculars DF,
EF, which must meet in some point F ; for if they were parallel, the lines

DB, CB, perpendicular to them would also be parallel (Cor. 2. 29. 1.), or

ebe form but one straight line : but they meet in B, and ABC is not a

straight line by hypothesis.

Let then, FA, FB, and FC be drawn ; then,

because F.\, FB meet AB at equal distances

from the perpendicular, they are equal. For
similar reasons FB, FC, are equal ; hence
ihe points A, B, C, are all equally distaat

from the point F, and ooasequently lie in the

circumference of the circle, whose centre is

F, and radius FA.
It is obvious, that besides this, no other

circumference can pass tlirough the same
points ; for the centre, lying in the perpen*

dicular DF bisecting the chord AB. and at the same time in the perpen*
dicular EF biiMiciing the chord BC (Cor. 1. 3. 3.), must be at the intersec-

tion of these perpondiculam ; so that, as there is but one centre, there can
be btu one circuioiereace.

PROP. C. THEOR.

[f two eircUs cut each otMer, the Ung wkieh pasMS tkrommk their centres mil &«
perpendicular to the chord which joins tht points of intersection, and wtll

divide it into two equal parts.

Let CD be the line which paasas through the centres of two circles cut-

ting each other, it will be perpendicular to the chord AU, and will diride it

into two equal parts.

For the line AB, which joins the points of intersection, is a chord com*

mon to the two circles. And if a perpendicular be erected from the middle

of this chord, it will pass (Cor. 1. 3. 3.) through each of ihe two centres C
and I). But no more than one straight line can be drawn through two

points; hence, the straight line which passes through the centres will bi-

sect the chord at right angles.

Cor. Hence, the line joining the intersections of the circumferences of
two circles, will be perpejulicular to the line which joins their centres-

SCHOLIUM.
1 . If two circles cut each other, the distance between their centres w ill

be less than the sum of their radii, and (he greater radius will be also les4
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than the sum of the smaller and the distance between the centres. For,

CD is less (20. 1.) than CA+ AD, and for the same reason, AD/ AC-|-

CD.
2. And, conversely, if the distance Ijetween the centres of two circles

be less than the sum of their radii, the greater radius being at the same lime

less than the sum of the smaller and the distance between the centres,

the two circles will cut each other.

For, to make an intersection possible, the triangle CAD mus-t be possi-

ble. Hence, not only must we have CD <^ AC+ AD, but also the greater

radius AD<AC4-CD ; And whenever the triangle CAD can be con-

structed, it is plain that the circles described from the centres C and D,
will cut each other in A and B.

Cor. 1. Hence, if the distance between the centres of two circles be

greater than the sum of their radii, the two circles will not intersect each
other.

CoR. 2. Hence, also, if the distance between the centres be less thar

the ditference of the radii, the two circles Avill not cut each other.

For, AC+CD>AD; therefore, CD>AD—AC ; that is, any side oi

a triangle exceeds the difference between the other two. Hence, the tn

angle is impossible when the distance between the centres is less than the

difference of the radii ; and consequently the two circles cannot cut each
other.

PROP. D. THEOR.

In tht same circle, equal angles at the centre are subtended by equal arcs ;

and, conversely, equal arrs subtend equal angles at the centre.

Let C be the centre of a circle, and let the angle ACD be equal to the

angle BCD ; then the arcs AFD, DGB, subtending these angles, are

equal.

Join AD, DB ; then the triangles ACD,
BCD, having two sides and the included an-
gle in the one, equal to two sides and the
included angle in the other, are equal : so
that, if ACD be applied to BCD, there shall

be an entire coincidence, the point A coin-

ciding with B, and D common to both arcs
;

the tv/o extremities, therefore, of the arc
AFD, thus coinciding with those of the arc
IJGD, all the intermediate parts must coin-
cide, inasmuch as they are all equally dis-

tant from the centre.

Conversely. Let the arc AFD be equal to the arc BGD ; thdn the an-
gle ACD is equal to the angle BCD.

For, if the arc AFD be applied to the arc BGD, they would coincide ;

so that the extremities AD of the chord AD, would coincide with those of
the chord BD

;
these chords are therefore equal : hence, the ano-le ACD

IS equal to the angle BCD (8. I.).

CoR. 1. It follows, more ner, that equal angles at the centre are sub
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tended by equal chords : and, conreraely, equal chords subtend equal an-

gles at the centre.

Cor. 2. It is also evident^ that equal chords subtend equal arcs : and,

conversely, equal arcs are subtended by equal chords.

CoR. 3. If the angle at the centre of a circle bo bisected, both the arc

and the chord which it subtends shall also be bisected.

Cor. 4. It follows, likewise, that a perpendicular through the middle

cf llie chord, bisects the angle at the centre, and passes through the middle

of the arc subtended by that chord.

SCHOLIUM.

The centre C, the middle point E of the chord AB, and the middle point

D of the arc subtended by this chord, are three points situated in the same
line perpendicular to the chord. But two points are sufficient to determine
the position of a straight line ; 'hence every straight line which passes
through two of the points just mentioned, will necessarily pass tlirough tho

third, and be perpendicular to the chord.

PROP. E. THEOR.

Tk» arcs of a circle intercepted by ttco parallels are e^ual ; and^ convtrstly, if
two straight lines intercept eoual ares of a circle, and do not cut each other

within the circle, the lines will bt paraUal.

There may be three cases :

Ftrst. I f the parallels are tangenu
lo the circle, as AB, CD ; then, each
of the arcs intercepted is a semi-cir-

cumference, as their points of contact
(Cor. 3. 16. 3.) coincide with the ex-
tremities of tlio diameter.

Second. When, of the two parallels

AB, GH, one is a tangent, the other

1 chord, which being perpendicular to

FE, the arc GEH is bisected by FE
(Cor. 4. Prop. D. Book 3.) ; so that in

this ca«o also, the intercepted arcs
GE, EH are equal.

Third. If the two parallels are chords, as GH, JK ; let the diameter
FE be perpendicular to the chord GH, it will also be perpendicular to JK.
since they are parallel ; therefore, this diameter must bisect each of the
arcs which they subtend: that is, GE= EH, and JE = EK ; therefore.
JE—GE=EK—EH ; or, which amounts to the same thine. JG is equal
to HK. * ^

CoKversely. If the two lines be AB, CD, which touch the circumfer-
ence, and if, at the same time, the intercepted arcs EJF, EKF are equal,
EF must be a diameter (Prop. A. Book 3.) ; and therefore AB, CD (Cor.
3. 16. 3.), are parallel.

But if only one of the lines, as AB, touch, while the other, G H, cuts the
circumference, making the arcs EG, EH equal; then the diameter FE

12
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which bisects the arc GEH, is perpendicular (Schol. D. 3.) to its chord

GH : it is also perpendicular to the tangent AB ; therefore AB, GH are

parallel.

If both lilies cut the circle, as GH, JK, and intercept equal arcs GJ,
HK ; let the diameter FE bisect one of the chords, as GH : it will also

bisect the arc GEH, so that EG is equal to EH ; and since GJ is {by hyp.)

equal to HK, the whole arc EJ is equal to the whole arc EK ; therefore

the chord JK is bisected by the diameter FE : hence, as both chords are

bisected by the diameter FE, they are perpendicular to it ; that is, they are

parallel (Cor. 28 1.).

SCHOLIUM.

The restriction in the enunciation of the converse proposition, namely,
that the lines do not cut each other within the circle, is necessary ; for

lines drawn through the points G, K, and J, H, will intercept equal arcs

GJ, HK, and yet not be parallel, since they will intersect each other within
the circle.

PROP. F. PROB.

To draw a tangent to any point in a circular arc, voithoutJinding the centre

From B the given point, take two equal

distances BC, CD on the arc
;
join BD,

and draw the chords BC, CD : make (23.

1.) the angle CBG=CBD, and the straight

line BG will be the tangent required.

For the angle CBD^CDB ; and there-

fore the angle GBC (32. 3.) is also equa^
to CDB, an angle in .he alternate segment

;

hence, BG is a tangent at B.
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BOOK IV.

DEFINITIONS.

A RECTILINEAL figure ia aaid to be inscribed in another roctilinek

figure, when all uie angles of the inscribed

figure are upon the sides of the figure in which
ii is inscribed, each upon each.

In like manner, a figure is said to be described

about another figure, when all the sides of the

circumscribed figure pass Umnigfa the angular

poinu of the figure about which it is described,

each through

3 A rectihnaal figure is said to be inscribed in

a circle, when all the angles of the inscribed

figure are upon the circtuufereace of the cir*

cle.

4. A rectilineal figure ia said to be described

about a circle, when each side of the circum-

scribed figure touches the circumference of the

circle.

). In like manner, a circle is said to be inscrib-

ed in a rectilineal figure, when the circum-

ference of the circle louche* each aide of the

figure.

6. A circle is said to be described about a recti-

lineal figure, when the circumference of the

circle paases throuch all the angular points of
the figure about which it is described.

7. A straight line is said to be placed in a circle,

when the extremities of it are in the circum-
ference of the circle.
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8. Polygons of five sides are called pentagons ; those of six sides, htxa-

gons; those of seven sides, heptagons ; those of eight sides, octagons ;

and so on.

9 A polygon, which is at once equilateral and equiangular, is called a

regular polygon.

Regular polygons may have any number of sides ; the equilateral tri

angle is one of three sides ; and the square is one of four sides.

LEMMA.

Any regular polygon may be inscribed in a circle, and circumscribed about one.

Let ABODE, &c. be a regular polygon : describe a circle through the

thiee points A, B, C, the centre being 0, and OP the perpendicular let fall

from it, to the middle point of BC : join AO and OD.
If the quadrilateral OPOD be placed upon

the quadrilateral OPBA, they will coincide

;

for the side OP is common : the angle OPC=
OPB, being right ; hence the side PC will ap-

ply to its equal PB, and the point C will fall

on B ; besides, from the nature of the polygon,

the angle PCD=PBA; hence CD will take

the direction BA, and since CD= BA,thc point

D will fall on A, and the two quadrilaterals

will entirely coincide. ^_^
The distance OD is therefore equal to AO

;
r

and consequently the circle which passes through the three points A, B, C,
will also pass through the point D. By the same mode of reasoning, it

might be shown that the circle which passes through the points B, C, D,
will also pass through the point E ; and so of all the rest : hence the cir-

cle which passes through the points A, B, C, passes through the vertices

of all the angles in the polygon, which is therefore inscribed in this circle.

Again, in reference to this circle, all the sides AB, BC, CD, &c. are
equal chords ; they are ti.^refore equally distant from the centre (Th. 14.

3.) : hence, if from the pomt O with the distance OP, a circle be describ-
ed, it will touch the side BC, and all the other sides of the polygon, each
in its middle point, and the circle will be inscribed in the polygon, or the
polygon circumscribed about the circle.

CoR. L Hence it is evident that a circle may be inscribed in, or cir-

cumscribed about, any regular polygon, and the circles so described have a
common centre.

Cor. 2. Hence it likewise follows, that iffrom a common centre, circles

can be inscribed in, and circumscribed about a polygon, that polygon is regu-
lar. For, supposing those circles to be described, the inner one will touch
all the sides of the polygon ; these sides are therefore equally distant from
its centre ; and, consequently, being chords of the circumscribed circle,
they are equals and therefore include equal angles. Hence the polygon is

at once equilateral and equiangular ; that is (Def. 9. B. IV.), it is regular.
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SCHOLIUMS.

1. The point O, the common centre of the inscribed and circumscribed

circles, may also be regarded as the centre of the polygon ; and upon thia

principle the angle AOB is called tlu angU at tJu centre^ being formed by

two radii dravm to the extremities of the same side AB.
Since all the chords are equal, all the angles at the centre must evident-

ly be equal likewise ; and therefore the value of each will be found by di«

viding four right angles by the ntunber of the polygon's sides.

2. To inscribe a regular polygon of a certain number of sides in a given

circle, we have only to divide the circumference into as many equal parts

as the polygon has sides : for the arcs being equal (see fig. Prop. XV. B. 4.),

the chords AB, BC, CD, iic. will also be equal ; hence, likewise, the tri-

angles ABG, BGC, CGD, ii,c. must be equal, because they are eouian-

gular ; henc^ all the angles ABC, BCD, CDE, &c. will be equal, and con-

sequently the figure ABCD, Ac. will be aregula polygon.

PROP. I. PROB.

Jn a gnmt eirtU to ptae* a straight line equal to a given straight Utte, mot

greater than the diameter of the drcle.

Let ABC be the given circle, and D the given straight line, not greater

than the diameter of the circle.

Draw BC the diameter of the circle

ABC ; then, if BC is equal to D, the

thing lequired is done ; for in the circle

ABC a straight line BC is placed equal

to D ; But, if it is not, BC is greater

than D ; make CE equal (Prop. 3. 1.)

to D, and from ihe centre C, at the dis-

tance CE, describe the circle AEF, and
join CA : Therefore, because C is the

centre of the circle AEF, C.\ is equal

to CF ; but D is equal to CE ; there-

fore D is equal to CA : Wherefore, in the circle ABC, a straight line is

placed, equal to the given straight line D, which is not greater than the
diameter of the circle.

PROP. II. PROB.

In a given circle to inscribe a triangle equiangular to a given triangle.

Let ABC bo the given circle, and DEF the given triangle ; i/ is re-

quired to inscribe in the circle ABC a triangle equiangular to the triangle

Draw(Prop. 17. 3.)the straight line GAH touching the circle in the ooini
A, and at the point A, in the straight line AH, make (Prop. 23. l.)the an-
gle HAC equal to the angle DEF ; and at the point A, in the straight line



94^ ELEMENTS

AG, make the angle GAB equal

to the angle DFE, and join

BC. Therefore, because HAG
touches the circle ABC, and AC
is drawn from the point of con-

tact, the angle HAC is equal

(32. 3.) to the angle ABC in the

alternate segment of the circle :

But HAC is equal to the angle

DEF ; therefore also the angle

ABC is equal to DEF ; for the

sume reason, the angle ACB is

equal to the angle DFE ; therefore the remaining angle BAG is equal

(4. Cor. 32. 1.) to the remaining angle EDF : "Wherefore the triangle ABC
ia equiangular to the triangle DEF, and it is inscribed in the circle ABC

PROP. HI. PROB.

About a given circle to describe a triangle equiangular to a given triangle.

Let ABC be the given circle and DEF the given triangle ; it is requir-

ed to describe a triangle about the circle ABC equiangular to the triangle

DEF.
Produce EF both ways to the points G, H, and find the centre K of the

circle ABC, and from it draw any straight line KB; at the point K in the

straight line KB, make (Prop. 23 1.) the angle BKA equal to the angle

DEG, and the angle BKC equal to the angle DFH ; and through the

points A, B, C, draw the straight lines LAM, MBN, NCL touching (Prop.

17.3.) the circle ABC : Therefore, because LM, MN, NL touch the circle

ABC in the points A, B, C, to which from the centre are drawn KA, KB,
KG, the angles at the points A, B, C, are right (18. 3.) angles. And be-

cause the four angles of the quadrilateral figure AMBK are equal to four

right angles, for it can be divided into two triangles ; and because two of

FK

them, KAM, KBM, are right angles, the other two AKB, AMB are equal
lo two right angles : But the angles DEG, DEF are likewise equal (13.1.)
to two right angles ; therefore the angles AKB, AMB are equal to the an
gles DEG, DEF, of which AKB is equal to DEG ; wherefore the reraaiti-
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ing angle AMB is equal to the remaining angle DEF. In like manner,
the angle L2^M may be demonctrated to be equal to OFE ; and therefore

the remaining angle MLN ia equal (32. 1.) to the remaining angle EDF :

Whcrefure tbe triangle LMN b equiangular to the triangle DEF : and il

• ie described about the circle ABC.

PROP. IV. PROB.

To mtcrihe a etrdt tn a given triamgU.

Let the given triangle be ABC ; k is required to inscribe a circle ia

ABC.
Bisect (9. 1 .) the angles ABC, BCA bv the straight lines BD, CO naeet-

ing one another in the point D, from which draw (13. 1.) DE, DF, DO
perpendiculam to AB, BC, C\. Then be>

cause the angle EUI) is equal to tbe ande
FBD, the angle ABC being bisected by
BD; and because the risht angle BED, is

equal to the right angle BFD, the two tri^

angles EUD, FBD have two angles of the

one equal to two angles of the <Kher ; and
the side BD, which is i>pposite to one of
the equal angles in each, is common to

both ; therefore their other sides are equal

(26. 1.): wherefore DE is equal to DF.
For the same reason, DG is equal to

DF , therefore the three straight lines DE, DF, DG, are equal to one
another, and the circle described from the centre D. at the distance of anv
of them, wilU)ass through the extremities of the other two, and will touch
the straight fmes AB, BC, CA, because the angles at the poinu E, F, O
are right antjles, and the straight line which is drawn from the extremity
of a diameter at rij»ht angles to it, touches (1 Cor. 16. 3.) thecircle. There-
fore the siraijfht lines AB, BC. CA, do each of them touch the circle, and
thecircle EFG is inscribed in the triangle ABC.

PROP. V. PROB.

To describe a circle about a given triangle.

I^t the given triangle be ABC ; it isjequired to describe a circle abotit
ABC.

Bisect (10. 1.) AB, AC in the points D, E, and from these points draw

A ^A A.
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DF, EF at right angles (11. 1.) to AB, AC ; DF, EF produced will meet
one another; for, if they do not meet, they are parallel, wherefore, AB,
AC, which are at right angles to them, are parallel, which is absurd : let

them meet in F, and join FA ; also, if the point F be not in BC, join BF,
CF : then, because AD is equal to BD, and DF common, and at right an-

gles to AB, the base AFis equal (4. 1.) to the base FB. In like manner,
it may be shewn that CF is equal to FA ; and therefore BF is equal to

FC ; and FA, FB, FC are equal to one another ; wherefore the cirCle de-

scribed from the centre F, at the distance of one of them, will pass

through the extremities of the other two, and be described about the trian-

gle ABC.

CoR. When the centre of the circle falls within the triangle, each of

its angles is less than a right angle, each of them being in a segment great-

er than a semicircle ; but when the centre is in one of the sides of the

triangle, the angle opposite to this side, being in a semicircle, is a right an-

gle : and if the centre falls without the triangle, the angle opposite to the

side beyond which it is, being in a segment less than a semicircle, is greater

than a right angle. Wherefore, if the given triangle be acute angled, the

centre of the circle falls within it ; if it be a right angle triangle, the cen-

tre is in the side opposite to the right angle ; and if it be an obtuse angled

triangle, the centre falls without the triangle, beyond the side opposite to the

obtuse angle.

SCHOLIUM.

1. From the demonstration it is evident that the three perpendiculars

bisecting the sides of a triangle, meet in the same point ; that is, the centre

of the circumscribed circle.
*

2. A circular segment arch of a given span and rise, may be drawn by
a modification of the preceding problem.

Let AB be the span and SR the rise.

Join AR, BR, and at their respective points of bisection, M, N, erect

the perpendicular MO, NO to AR, BR ; they
will intersect at 0, the centre of the circle.

That 0A= 0R=:0B, is proved as before.

The joints between the arch-stones, or
voussoirs, are only continuations of radii

drawn from the centre O of the circle.

PROP. VI. PROB.

To inscribe a square in a given circle.

Let ABCD be the given circle
; it is required to inscribe a square in

ABCD. '

Draw the diameters, AC, BD at right angles to one another, and join
AB, BC, CD, DA

; because BE is equal to ED, E being the centre, and
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beciuse E\ is at right angles to BD, and

common to the triangles AI3E, ADE; the

base BA h equal (4. 1.) to the base AD ; and.

for ihe same reason, BC, CD are each of

them equal to BA or AD ; therefore the quad-

rilateral figure ABCD is equilateral. It ia

aliM rect^gular ; for the straight line BD be-

ing a diameter of the circle ABCD, BAD is

a oemicircle ; wherefore the anglu BAD is a

right angle (31.3.); for the same reason each

of the angles ABC, BCD, CDA is a right an-

gle ; therefore the quadrilateral fiffure ABCD
is rectangular, and it has been shewn to be

equilateral; therefore it is a square ; and

ABCD.

SCHOLIUM.

it is inscribed in the circle

Since the triangle AED is right angled and isosceles, we hatre (Cor. 2.

47. 1 ) AD : AE : : •v/2 : 1 ; hence the side of the inscribed square is to

the radius, as the square root of 2, is to uftity.

PROP. VII. PROS.

To describe a square about a given, cireie.

Let ABCD be the given circle ; it is required to describe a square about it.

Draw two diameters AC, BO of the circle ABCD, at ri;;ht angles tu

one another, and through the points A,B,C, D draw (17. 3.) FG, Gil, II K.
KF touching the circle ; ani because FG touches the circle ABCD, and

E.\ is drawn from the centre E to the point of contact A, the angles at .\

are right angles (18. 3.) ; for the same reason, the angles at the poinui B,

C, D, are right angles; and because the angle AEB is a right angle, as

likewise is EBG, GH is parallel (28. 1.) to AC ; for the same reason, AC
is parallel to FK, and in like manner, GF,
UK may each of them be demonstrated to bo __ _

parallel to BED; therefore the figures GK,
GC, AK, FB, BK are parallelosjrams ; and

GF is therefore equal (34. 1.) to UK. and Gil
to FK ; and because AC is equal to BD,
and also to each of the two GH, FK ; and
BD to each of the two GF, HK : GH. FK
are each of them equal to GF or HK ; there-

lore the quadrilateral figure FGHK is equi-

lateral. It is also recungular ; for GBE.\
being a parallelogram, and AEB a right an-

gle, AGU (34. 1.) is likewise a right angle :

in the same manner, it may be shewn that the angles at H, K, F arc right

angles; therefore the quadrilntenil figure FG II K is reclanj^ular ; and it

was demonstrated to be equilateral ; therefore it is a square ; and it is de-

scribed about the circle ABCD.
13
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PROP. VIII. PROB.

To inscribe a circle in a given square.

Let ABCD be the «/iven square ; it is required to inscribe a circle in

ABCD.
Bisect (10. 1.) each of the sides AB, AD, in the points F, E, and

through E draw (31. 1.) EH parallel to AB or DC, and through F dr^w

FK parallel to AD or BC ; therefore each of the figures, AK, KB, AH,
HD, AG, GC, BG, GD is a parallelogram, and their opposite sides are

equal (34. 1.) ; and because that AD is equal to AB, and that AE is the

half of AD, and AF the half of AB, AE is equal to AF ; wherefore the

sides opposite to these are equal, viz. FG to GE ; in the same manner it

may he demonstrated, that GH, GK, are each

of them equal to FG or GE ; therefore the

four straight lines, GE, GF, GH, GK, are

equal to one another ; and the circle described

from the centre G, at the distance of one of

them, will pass through the extremities of the

other three ; and will also touch the straight

lines AB, BC, CD, DA, because the angles

at the points E, F, H, K, are right angles

(29. 1.), and because the straight line which
is drawn from the extremity of a diameter at

right angles to it, touches the circle (16. 3.)

;

therefore each of the straight lines AB, BC,
CD, DA touches the circle, which is therefore inscribed in the squares

ABCD.

PROP. IX. PROB.

To describe a circle about a given square.

Let ABCD be the given square ; it is required to describe a circle

about it.

Join AC, BD, cutting one another in E ; and because DA is equal to

AB, and AC common to the triangles DAC, BAG, the two sides DA, aC
are equal to the two BA, AC, and the base DC is equal to the base BC ;

wherefore the angle DAC is equal (8. 1.) to the
angle BAG, and the angle DAB is bisected by
the straight line AC. In the same manner it may
be demonstrated, that the angles ABC, BCD,
CDA are severally bisected by the straight lines

BD, AC ; therefore, because the angle DAB is

equal to the angle ABC, and the angle EAB is

the half of DAB, and EBA the half of ABC ; the
angle EAB is equal to the angle EBA : and the
«ido EA (6. 1.) to the side EB. In the same
manner, it may be demonstrated, that the straight
lines EC, ED are each of them equal to Ea'', or EB ; therefore the four
straight lines EA, EB, EC, ED, are equal to one another; and the circle
di^scTibed from the centre E, at the distance of one of them, must pas*
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through the extremities of the other three, and be described about th«

square AiiCD.

PROP. X. PROB.

To describe an isosceles triangle, having taek of the angles at the bast double

of the third angle.

Take any straight line AB, and divide (11. 3.) it in the point C, so

that the rectangle AB.BC may be equal to the square of AC ; and from

the centre A, at the distance AB, describe the circle BDE, in which
place (1.4) the straight lino BD equal to AC, which is not greater

than thr> diameter of the circle BDE ; join DA, DC, and about the tri<

angle ADC describe (5. 4.) the circle ACD ; the triangle ABD is such

as is required, that is, each of the angles ABD, ADB is double of the an-

gle BAD.
Because the rectangle AB.BC is equal to the tqaare of AC, and AC

equal to Bl), tlie recungle AB.BC is

equal to the square of BD ; and because

from tlie point B without ihfi circle ACD
two straight lines BCA, BD are drawn
to the circumference, one of which cuts,

and the other meets the circle, and the

recLingie .\B.BC contained by the whole
of the cutting line, and the part of it

without thtf circle, is equal to the square

of BD, which meets it ; the straight line

BD touches (37. 3.) the circle ACD.
And because BD touches the circle, and
DC is drawn from the point of contact

D, the angle BDC is equal (32. 3) to

the angle 1).\C in the alternate segment
of the circle, to each of these add the angle CDA ; therefore the whole
angle BDA is equal to the two angles CDA, DAC ; but the exterior angle
BCD in equal (32. 1.) to the angles CDA, DAC ; therefore also BDA is

equal to BCD; but BDA is ecjual (5. 1.) to CBD, because the side AD
is equal to the side AB ; therefore CBD, or DBA is equal to BCD ; and
consequently ihe three angles BD.\, DBA, BCD, are equal to one anoihi-r.

And brcauso the angle DUG is equal to the angle BCD, the side HI) is

equal (6. 1.) to the side DC ; but BD was made equal to CA ; iheref«»re

also C\ is equal to CD, and the angle CD.\ equal (5. 1.) to the aii<<lf

DA<v ; therefore the angles CD.\, D.\C together, are double of the an_'t'-

DAC; but BCD is equal to llio angles CDA, DAC (32. 1); thfrflor.'

also H(*l) is double of DAC. But BCD is equal to each of the at..! h

BDA, DMA. and therefore each of the angles BDA, DBA, is don!. I.- of

the angle DAB ; wherefore an isosceles triangle ABD is describeil. hav-
ing each of the angles at the base doul)le of the third angle.

"CoR. 1. The angle BAD is the fifth part of two rijjlit nnuleH.
" For since each of the angles ABD and ADB is equal to twii c tlie an-
•* gle BAD, ihey are together equal to four limes BAD, and ihoreforf all

"the three angles ABD, ADB, BAD, taken together, are equal to five
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' times the angle BAD. But the three angles ABD, ADB, BAD are
" equal to two right angles, therefore five times the angle BAD is equal to

" two right angles ; or BAD is the fifth part of two right angles."

" CoR. 2. Because BAD is the fifth part of two, or the tenth part of
" four right angles, all the angles about the centre A are together equal to

" ten times the angle BAD, and may therefore be divided into ten parts
" each equal to BAD. And as these ten equal angles at the centre, must
" stand on ten equal arcs, therefore the arc BD is one-tenth of the cir-

" cumference ; and the straight line BD, that is, AC, is therefore equal to
** the side of an equilateral decagon inscribed in the circle BDE."

PROP. XL PROB.

To inscribe an equilateral and equiangular pentagon in a given circle.

Let ABODE be the given circle, it is required to inscribe an equilateral

and equiangular pentagon in the circle ABODE.
Describe (10. 4.) an isosceles triangle FGH, having each of the angles

at G, H, double of the angle at F ; and in the circle ABODE inscribe (2.

4.) the triangle AOD equiangular to the triangle FGH, so that the angle

CAD be equal to the angle at F, and each of the angles AOD, ODA equal
to the angle at G or H : where-
fore each of the angles AOD,
CDA is double of the angle

CAD. Bisect (9. 1.) the angles

AOD, ODA by the straight lines

C£, DB; andjoinAB,BO,ED,
EA. ABODE is the pentagon
required.

Because the angles AOD,
ODA are each of them double
ot CAD, and are bisected by the
straight lines OE, DB.the five angles DAC, ACE, ECD, ODB, BDA are
equal to one another ; but equal angles stand upon equal arcs (26. 3.) ;

therefore the five arcs AB, BO, CD, DE, EA are equal to one another ; and
equal arcs are subtended by equal (29. 3.) straight lines ; therefore the
five straight lines AB, BO, CD, DE, EA are equal to one another. Where-
loro the pentagon ABODE is equilateral. It is also equiangular ; be-
cause the arc AB is equal to the arc DE ; if to each be added BOD, the
whole ABOD is equal to the whole EDOB ; and the angle A ED stands
on the arc ABOD, and the angle BAE on the arc EDOB : therefore the
angle BAE is e^.ual (27. 3.) to the angle AED : for the same reason, each
o( the angles ABO, BOD, ODE is equal to the angle BAE or AED : there-
lore the pentagon ABODE is equiangular; and it has been shewn that It

18 equilateral. Wherefore, in the given circle, an equilateral and equian
gular pentagon has been inscribed.

Otherwise.

" Divide the radius of the given circle, so that the rectangle contained
•* by the whole and one of the parts may be equal to the square of the othet
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**(n. 2.). Apply in the circle, on each side of a given point, a line

" equal to the greater of these parts ; then (2. Cor. 10. 4.), each of the
" arcs cut off* will be one-tenth of the circiunference, and ilierefore the
*' arc made up of both will be one-fifth of the circumference ; and if the
" straight line subtending this arc be drawn, it will be the side of aa
'* equilateral pentagon inscribed in the circle."

PROP. XII. PROS.

^ T(9 describe en equilateral and equiangular pentagon about a gtven circle

\je\ ABODE be the giren circle, it is required to describe an equilaten;!

and equiangular pentagon aboiuthe circle ABODE.
I^t the angles of a pentagon, inscribed in the circle, by the last pro-

position, be in the poinu A, B, C, D, £, so that the arcs AB. BC, CI),

DE, EA are equal (11.4); and through the points A. B. C, D, E. draw
UH, HK,.KL, LM, MG, touching (17. 3.) the circle; take the centre F,
and join FB, FK, FC, FL, FD. And because the straight line KL touch*

es the circle ABODE in the point 0, to which FC is drawn from the cen-

tre F, FC is perpendicular ( 1 8. 3.) to KL ; therefore each of tiie angle*

at is a right angle ; for the same reason, the angles at the points B, D ara

right angles ; and becaaae FCK is a right angle, the square of FK is equal

i47.

1.) 10 the square* of FC, OK. For the aain* reason, the square ul

^K is equal to the squares of FB, BK : therefore the squares of FC, CK
are equal to the squares of FB, BK, of which the square of FC \m equal to

the square of FB ; the remaining equare of CK is therefore equal to the

remaining square of BK, and the straight line CK equal to BK : and be-

cause FB is equal to FC, and FK common to the triangles BFK, CFK,
the two BF, FK are equal to the two OF, FK ; and the base BK im equal

to the base KG ; therefore the angle BFK is equal (8. 1.) to the angle

KFC, and the angle BKF to FKC ; wherefore the angle BFC is double

of the angle KFC, and BKC double of FKC : for the same reason, the an-

gle CFD is double of the angle.CFL, and OLD double of CLF : and be-

cause the arc BC is equal to the arc CD, the angle BFC is equal (27. 3.)

to the angle CFD: and BFC is double of the angle KFC, and CFIi
double of CFL ; therefore the angle

KFC is equal to the angle CFL

:

noxr the rigbt angle FCK is equal to

the right angle FCL ; and therefore,

in the two triangles FKC, PLC, there

are two angles of one equal to two an-

gles of the other, each to each, and the

aide FC, which is adjacent to the

equal angles in each, is common to

both ; therefore the other sides are

equal (26. 1 .) to the other side8,and the

third angle to the third angle ; there-

fore the straight line KC is equal to

CL, and the angle FKC to the angle

FLC : and because KC is equal to CL, KL is double of KC : in the same
nunner, it may be shewn that HK is double of BK ; and because BK \m
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equal to KC, as was demonstrated, and KL is double of KC, and HK double

of BK, HK ii^ equal toKL ; in like manner, it may be shewn that GH, GM,
ML are each of them equal to HK or KL : therefore the pentagon GHKLM
is equilateral. It is also equiangular ; for, since the angle FKC is equal to

the angle FLC, and the angle HKL double of the angle FKC, and KLM
double of FLC, as was before demonstrated, the angle HKL is equal' to

KLM ; and in like manner it may be shewn, that each of the angles KHG,
HGM, GML is equal to the angle HKL or KLM ; therefore the five an-

gles GHK, HKL, KLM, LMG, MGH being equal to one another, the pen-

tagon GHKLM is equiangular ; and it is ecjuilateral as was demonstra

ted : and it is described about the circle ABCDE.

PROP. XIIL PROB.

To inscribe a circle in a given equilateral and equiangUMr pentagon.

Let ABCDE be the given equilateral and equiangular pentagon ; it is

required to inscribe a circle in the pentagon ABCDE.
Bisect (9. 1.) the angles BCD, CDE by the straight lines CF, DF, and

from the point F, in which they meet, draw the straight lines FB, FA,
FE ; therefore, since BC is equal to CD, and CF common to the trian-

gles BCF, DCF, the two sides BC, CF are equal to the two DC, CF
;

and the angle BCF is equal to the angle DCF : therefore the base BF is

equal (4. 1.) to the base FD, and the other angles to the other angles, to

which the equal sides are opposite ; therefore the angle CBF is equal, to

the angle CDF : and because the angle CDE is double of CDF, and CDE
equal to CBA, and CDF to CBF ; CBA is also double of the angle CBF ;

therefore the angle ABF is equal to the

angle CBF ; wherefore the angle ABC
is bisected by the straight line BF : in

the same manner, it may be demonstra-

ted that the angles BAE, AED, are bi-

sected by the straight lines AF, EF :

from the point F draw (12. 1.) FG,
FH, FK, FL, FM perpendiculars to

the straight lines AB, BC, CD, DE,
EA ; and because the angle HCF is

equal to KCF, and the right angle

FHC equal to the right angle FKC ; in

the triangles FHC, FKC there are two
angles of one equal to two angles of the other, and the side FC, which is

opposite to one of.the equal angles in each, is common to both ; therefore,

the other sides shall be equal (26. 1.), each to each ; wherefore the per-

pendicular FH is equal to the perpendicular FK : in the same manner it

may be demonstrated, that FL, FM, FG are each of them equal to FH, or

FK ; therefore the five straight lines FG, FH, FK, FL, FM are equal to

one another ; wherefore the circle described from the centre F, at the dis-

tance of one of these five, will pass through the extremities of the other

four, and touch the straight lines AB, BC, CD. DE, E A, because that the

angles at the points G, H, K, L, M are right angles, and that a straight line

diawn from trie extremity of the diameter of a circle at ri'^ht anoles to it
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«uucue8 (I . Cor. 16. 3.) the circle ; therefore etch of the straight linea AB,

BC, CD, UE, EA touches the circle ; wherefore the circle is inscribed in

the pentagon ABCDE.

PROP. XIV. PROB.

To describe a tirele about a given equilateral and equiangular pentagon.

Let ADCDE be the given eqtiilaieral and equiangular penUgon ; it i«

required to describe a circle about it.

Bispci (9. 1.) the angles BCD, CDE by the straight lines CF, FD, and

from the point F, in which they meet, draw

the straight linea FB, FA, FE to the poinU

U, A, E. It may be demonalraied, in the

itame manner as in the preceding proposition,

that the angles CBA, BAE. A ED are bisect-

ed by the straight lines FB, FA, FE : and

because that the angle BCD is equal to the

angle CDE, and that FCD is the half of the

angle BCD, and CDF the half of CDE ; the

angle FCD is equal to FDC ; wherefore the

side CF is equal (6. 1.) to the aide FD : in

like manner it may be demonstrated, that FB,
FA, FE are each of them equal to FC, or FD : therefore the five straight

lines FA, FB, FC, FD, FE are equal to one another; and the circle de-

scribed from the centre F, at the distance of one of them, will passlhrough

the extremities of the other four, and be described about the equilateral

and equiangular pentagon ABCDE.

PROP. XV. PROB.

To inscribe an equilateral and equiangular hexagon in a given eirele.

Let ABCDEF be the given circle; ii is required to inscribe an equi-

lateral and equiangular hexagon in it.

Find ih« centre G of the circle ABCDEF. and diaw the diameter AGI):
and frnrn D, as a centre, at the distance DCJ, describe the circle EGCH,
join FAi, CG, and produce ihein to the points B, F; and join AB, BC,
CD, DE, FIF, FA : the hexagon ABCDEF is equilateral and ifiuianifular.

Because G is the centre of the circle ABCDEF, GE is ef|ua! to GD :

and because D is the centre of the circle EGCH, DE is equal to I)G ;

wherefore GE is equal to ED, and the triangle EGD is equilateral ; aiiil

therefore its three angles EGD, GDE, DEG are equal to one aiioth«*r

(Cor. 5. !.); and the three angles of a triangle are equal (3J. 1.) to two
right nn^lfs ; therefore the angle EGD is the third part of two rislit an-

gles : in the same manner it may be demonstrated that the angle IJG(' is

ilso the third pari of two ri^ht angles ; and because the strai<;lit liiu* (iC

makes with EB the adjacent an>;les EGC, CGU eijual (13. 1.) to two
light angles ; the remaining angle CGB is the third part of two right

angles; therefore the angles EGD, DGC, CGB, are equal to one an-

other; sod also the angles vertical to them, BGA, \G\\ FGE (Ih
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1.); therefore the six angles EGD, DGC,
CGB, BG A, AGF, FGE are equal to one an-

other. But equal angles at the centre stand

upon equal arcs (26. 3.) : therefore the si.x

arcs AB, BC, CD, DE, EF, FA are equal

to one another : and equal arcs are subtend-

ed by equal {29. 3.) straight lines ; there-

lore the six straight lines are equal to one

another, and the hexagon ABCDEF is

equilateral. It is also equiangular ; for,

since the arc AF is equal to ED, to each of

these add the arc ABCD ; therefore the

whole arc FABCD shall be equal to the

whole EDGBA : and the angle FED stands

upon the arc FABCD, and the angle AFE
upon EDGBA; therefore the angle AFE
is equal to FED : in the same manner it may be demonstrated, that the

other angles of the hexagon ABCDEF are each of them equal to the

angle AFE or FED ; therefore the hexagon is equiangular ; it is also

equilateral, as was shown ; and it is inscribed in the given circle ABCDEF.
CoR. From this it is manifest, that the side of the hexagon is equal to

the straight line from the centre, that is, to the radius of the circle.

And if through the points A, B, C, D, E, F, there be drawn straight

lines touching the circle, an equilateral and equiangular hexagon shall be

described about it, which may be demonstrated from what has been said

of the pentagon ; and likewise a circle may be inscribed in a given equi-

lateral and equiangular hexagon, and circumscribed about it, by a method
like to that used for the pentagon.

PROP. XVI. PROB.

To inscribe an equilateral and equiangular qutndecagon in a given

circle.

Let ABCD be the given circle ; it is required to inscribe an equilateral

and equiangular quindecagon in the circle ABCD.
Let AC be the side of an equilateral triangle inscribed (2. 4.) in the

circle, and AB the side of an equilateral

and equiangular pentagon inscribed (11. 4.)

in the same ; therefore, of such equal parts

as the whole circumference ABCDF con-
tains fifteen, the arc ABC, being the third

part of the whole, contains five ; and the

arc AB, which is the fifth part of the whole,
contains three ; therefore BC their differ-

ence contains two of the same parts : bi-

sect (30. 3.) BC in E ; therefore BE, EC
are, each of them, the fifteenth part of the

whole circumference ABCD : therefore, if

the straight lines BE, EC be drawn, and
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straight lines equal to them be placed (1.4.) around in the whole circle,

an equilateral and equiangular quindecagon will be inscribed in iu

And in the same manner as was done in the pentagon, if through the

points of division made by inscribing the quindecagon, straight lines be
drawn touching the circle, an equilateral and equiangular quindecagon may
be described, about it : and likewise, as in the pentagon, a circle may b«

inscribed in a given equilateral and equiangular quindecagon, and cii<

cuQiscribed about iL

SCHOLIUM.

Any regular polygon being inscribed, if the arcs subtended by its 8ide»

be severally bisected, the chords of those 8emi*arcs will form a now regii-

lar polygon of double the number of sides : thus, from having an inscribed

square, we may inscribe in succession polygons of 8. 16, 3*2, 64, dec. sides ;

from the hexagon may be formed polygons of 12, 24, 48, 96, &c. sidei*

;

from the decagon polygons of 20, 40, 80, 6i.c. sides ; and from the penic*

decagon we may inscribe polygons of 30, 60, &c. sides ; and it i» pUm
that each polygon will exceed the preceding in surface or area.

It is obvious that any regular polygon whatever might be inscribed in s

circle, provided that its circumference could be divided into any proposed

number of equal parts ; but such division of the circumference like the tri-

section of an angle, which indeed depends on it, is a problem which has
not yet been effected. There are no means of inscribing in a circle a regu-

lar heptagon, or which b the same thing, the circumference of a circle can-

not be divided into sereo equal psjls, bv any method hitherto discovered

It was long supposed, that besides the polygons above mentioned, no
other could be inscribed by the operations of elemt-nlary Geometry, or,

what amounts to the same thing, by the resolution of equations of the first

and second de^ee. But M. Gatus, of Gottingen, at length proved, in a

work entitled Disquisitions Antkmetiem, Ltpsie, 1801, that the circumfer-

ence of a circle could be divided into any number of equal parts, capable

of being expressed by the forfnula 2*+ 1. provided it be a prime number,
that is, a nmnber that cannot be resolved into factors.

The number 3 is the simplest of this kind, it being the value of the

above formula when n= l ; the next prime number is 5, and this is also

contained in the formula ; that is, when n=2. But polygons of 3 and 6
sides have already been inscribed. The next prime number expressed bv
the formula is 17 ; so that it is possible to inscribe a regtUar polygon of

17 sides in a circle.

For the investigation of Gauss's theorem, which depends upon the the-

ory of algebraical equations, the student may consult Barlow*s Theory of

J\ Mmbers.

14
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GEOMETRY.

BOOK V.

In the demonstrations of this book there are certain " signs or characters^

which, it has been found convenient to employ.

' 1. The letters A, B, C, &c. are used to denote magnitudes of any kind.

''The letters m, n, p, q, are used to denote numbers only.

It is to be observed, that in speaking of the magnitudes A, B, C, &c.,

we mean, in reality, those which these letters are employed to repre-

sent ; they may be either lines, surfaces, or solids.

,

' 2. When a number, or a letter denoting a number, is written close to

" another letter denoting a magnitude of any kind, it signifies that the
" magnitude is multiplied by the number. Thus, 3A signifies three
" times A ; mB, m times B, or a multiple of B by m. When the num-
" ber is intended to multiply two or more magnitudes that follow, it is

" written thus, m(A4-B), which signifies the sum of A and B taken ?«

"times ; m(A—B) is m times the excess of A above B.
' Also, when two letters that denote numbers are written close to one an-
" other, they denote the product of those numbers, when multiplied into

" one another. Thus, mn is the product of m into n ; and mnA is A mul-
" " tiplied by the product of m into n.

DEFINITIONS.

1 A less magnitude is said to be a part of a greater magnitude, when the
less measures the greater, that is, when the less is contained a certain

number of times, exactly, in the greater.

2. A greater magnitude is said to be a multiple of a less, when the greater
ismeasured by the less, that is, when the greater contains the less a cer-
tain number of times exactly,

3. Ratio is a mutual relation of two magnitudes, of the same kind, to one
another, in respect of quantity.
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4. Magnitudes are said to be of the same kind, wheu the less can be uiul>

tiplied so as to exceed the greater ; and it is only such magnitudes that

are said lo hare a ratio to one another.

5. If there be four magnitudes, and if any equimultiples whatsoever be

taken of the first and third, and any equimultiples whatsoever of the se-

(ond and fourth, and if, according as the multiple of the first is greater

than the multiple of the second, equal to it, or less, the multiple of the

third is also greater than the multiple of the fourth, equal to it, or less ;

then the first of the magnitudes is said to have to the second the same
ratio that the third has to the fourth.

6. Magnitudes are said to be proportioiuds, when the first has the same
ratio to the second that the third has to the fourth ; and the third to the

fourth the same ratio which the fiflh has to the sixth, and so on whatever
bo their number.

'When fotir magnitudes, A,D, C, D are propoitiooals, it is tisual to say
** that AistoBasC toD, and to write them thus, A : B :: C : D, or

"thus, A : B=C : D."

7. When of the equimultiples of four msgnitudes, taken as in the fifth

definition, the midtiple of the first is greater than that of the second,
but ibu multiple of the tliird is not greater than the mtiltiple of the fourth :

then ihe first is said to bare to the second a greater ratio than the third

magnitude has to the fourth : and, on the contrary, the third is said to

have to the fourth s less ratio than the first has to the second.

8 When there is any number of magnitudes greater than two, of which
the first has to the second the same ratio that the second has to the

third, and tlio second to the third the same ratio which the third has to

the fourth, and so on, the magnitudes are said to be continual propor>

tionals.

9. When three magnitudes are continual proportionals, the second is said

to bo a mean pro{K)rtio.nal between the other two.

10. When there is any number of magnitudes of the same kind, the first

is said to have to the last the ratio compounded of the ratio which the

first has to the second, and of the ratio which the second has to the

third, and of the ratio which the third has to the fourth, and so on unto
the last magnitude.

Fur example, if A, B, C, D, be four magnitudes of the same kind, the

first A is said to have to the last D, the ratio compounded of the ratio

of A to B, and of tho ratio of B to C, and of the ratio of C to D ; or,

the ratio of A to D is said to be compounded of the ratios of A to H,
B to C, and C to D.

And if A : BriE : F; and B : C::G : H,andC : D::K : A, then, since
by this definition A has to D the ratio compounded of the ratios of A to

B, B to C, C to D ; -\ may also be said to have to D the ratio compounded
of the ratios which are the same with the ratios of E to F, G to H
and K to L.
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In like manner, the same things being supposed, if M has to N the same

ratio which A has to D, then, for shortness' sake, M is said to have to

N a ratio compoimded of the same ratios which compound the ratio of

A to D ; that is, a ratio compounded of the ratios of E to F, G to H,

and K to h.

11. If three magnitudes are continual proportionals, the ratio of the first

to the third is said to be duplicate of the ratio of the first to the second
'* Thus, if A be to B as B to C, the ratio of A to C is said to be duplicate

" of the ratio of A to B. Hence, since by the last definition, the ratio

" of A to C is compounded of the ratios of A to B, and B to C, a ratio,

" which is compounded of two equal ratios, is duplicate of either of

" these ratios."

12. If four magnitudes are continual, proportionals, the ratio of the first

to the fourth is said to be triplicate of the ratio of the first to the second,

or of the ratio of the second to the third^&c.
' So also, if there are five continual proportionals ; the ratio of the first

" to the fifth is called quadruplicate of the ratio of the first to the se-

"cond ; and so on, according to the number of ratios. Hence, a ratio

" compounded of three equal ratios, is triplicate of any one of those ra-

" ties ; a ratio compounded of four equal ratios quadruplicate," «fec.

13. In proportionals, the antecedent terms are called homologous to one
another, as also the consequents to one another.

Geometers make use of the following technical words to signify certain

ways of changing either the order or magnitude of proportionals, so as

that they continue still to be proportionals.

14. Permutando, or alternando, by permutation, or alternately ; this word
is used when there are four proportionals, and it is inferred, that the first

has the same ratio to the third which the second has to the fourth ; or

that the first is to the third as the second to the fourth : See Prop. 16.

of this Book.

15. Invertendo, by inversion : When there are four proportionals, and it is

inferred, that the second is to the first, as the fourth to the third. Prop
A. Book 5.

16. Componendo, by composition : When there are four proportionals, and
it is inferred, that the first, together with the second, is to the second aa
the third, together with the fourth, is to the fourth. 18th Prop. Book 5.

17. Dividendo, by division ; when there are four proportionals, and it is

inferred that the excess of the first above the second, is to the second,
as the excess of the third above the fourth, is to the fourth. 1 7th Prop.
Book 5.

18. Convertendo by conversion ; when there are four proportionals, and
it is inferred, that the first is to its excess above the second, as the third
o its excess above the fourth. Prop. D. Book 5.
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19. Ex aeqaali (sc. distantia), or ex equo, from equality of distance
i

when there is any number of magnitude* nx>re than two, and aa manT
others, so that they are proportionals when taken two and two of each

rank, and it is inferred, that the first is to the last of the first rank ol

magnitudes, as the first is to the last of the others ; Of this there are the

two fuilowing kinds, which arise from the different order in which the

magnitudes are taken two and two.

30. £x erquali, from eqnaiity ; this term is used simply by itself, when
lUo first magnitude is to the second of the first rank« as the first to the

second of the other rank ; and as the second is to the third of the first

rank, so is the second to the third of the other ; and so on in order, and
the inference is as mentioned in the preceding definition ; whence this

is called ordinate proportion.

It is deutuistraied in the 22d Prop. Book 5.

21. Ex ffquali, in proportione perturbata, sen inordinata : from equality, in

perturbate, or disorderly proportion ; this term is used when the first

magnitude is to the second of the first rank, as the last but one is to the

last of the second rank ; and as the second is to the third of the first

rank, so is the last but two to the last but one of the second rank ; and
as the third is to the fourth of the first rank, so is the third from the last,

to the last but two, of the second rank ; and so on in a cross, qr inverst,

order ; and the inference is as in the 19lh definition. It is demonstrated

in the 23d Prop, of Book 5.

AXIOMS.

1

.

EQUiiiin.Tin.Es of the same, or of equal magnitudes, are equal to one
another.

2. Those magnitudes of which the same, or equal magnittidcs, are equi«

multiples, are equal to one another.

3. A multiple of a greater magnitude is greater than the same multiple of
a leas.

4. That magnitude of which a multiple is greater than the same multi-

ple of aiioihcr, is greater than that other magnitude.

PROP. I. THEOR.

If any number of magnitudes h« equimultiples of as many others, each of
each what mutlipU soever any one of thefirst is of its pert, t/ie same mul-
tiple is ths sum of all the first of the sum of all the rest.

Let any number of magnitudes A, B, and C be equimultiples of as many
others, D, E, and F, each to each, A+B+C is the same multiple of D+
E+ F, that A isof D.

Let A contain D, B contain E, and C contain F, each the same number
of times, as, for instance, three times
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Then, because A contains D three times, A=D+D4- D.

For the same reason, B= E+ E-|-E ;

And also, C=F+F+F.
Therefore, adding equals to equals (Ax. 2, 1.), A+B+C is equal to

D+E+ F, taken three times. In the same manner, if A, B, and C wero

each any other equimultiple of D, E, and F, it would be shown that X+
B+C was the same multiple of D+E+F.

Cor. Hence, if m be any number, wD+mE+mF=m(D-fE-f F).

For mD, otE, and mF are multiples of D, E, and F by m, therefore their

sum is also a multiple of D+E+ F by m.

PROP. II. THEOR.

If to a mnUtple of a magnitude hj any number, a multiple of the same mag-

nitude by any number be added, the sum will be the same multiple of that

magnitude that the sum of the two numbers is of unity.

Let A=otC, and B=nC; A+B= (OT+n)C.

For, since A=otC, A=C+ C+ C+ &c. C being repeated m times. For

the same reason, B=C+ C4-<^c. C being repeated n times. Therefore,

adding equals to equals, A+ B is equal to C taken m-\-n times ; that is,

A+B=(m+n^C. Therefore A+B contains C as oft as there are units

in m+w-

CoR. 1. In the same way, if there be any number of multiples what-

soever, as A=wiE, B=«E, C=j9E, it is shown, that A+B-f-C=(m+n
+;,)E.

Cor. 2. Hencealso,sinceA+B+C=(m4-"4-/')E,andsince A=otE,
B=nE, and C=pE, ffiE+nE+;jE=(m+/i+p)E.

PROP. III. THEOR.

Jf the first of three magnitudes contain the second as often as there are units

in a certain number, and if the second contain the third also, as often as

there are units in a certain number, the first toill contain the third as often

as there are units in the product of these two numbers.

Let A=»iB, and B=nC ; then A=«?7iC.
Since B=nC, mB=7iC+ nC+ &c. repeated m times. But ?iC+ wC,

&c. repeated wi times is equal to C (2. Cor. 2. 5.), multiplied by n-f-rj-f&c.
n being added to itself m times ; but n added to itself m times, is n multi-

plied by m, or mn. Therefore nC-\-nC-\-&Lc. repeated m times=OT«C;
whence also mB=mnC, and by hypothesis A=otB, therefore k=innC
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PROP. IV. THEOR.

If thefrSt offour magnitudes has thr. sams ratio to the second vAirA the third

has to the fourth, and if any equimulti})les tchatever be taken of the first and
third, and any whatever of the second andfourth ; the multipU ofthe first

shall have the same ratio to the multiple of the second^ that tko muUipU of
the thtrd has to the multiple of the fourth.

Let A : B : : C : D, »nd let m and n be any two numbers ; mA : mB :

:

mC : nD
Take ufmA and mC equimultiples by any number d, and ofnB and mD

equimultiplps by any number q. Then the equimultiples of mA, and mC
by p, are equimultiples also of A and C, for they contam A and C as oft a«

there are units in pm (3. 5.), and are equal xopmA. and mnC. For the sam«
reason the multiples of nU and nU by 9, are qnB, qnu. Since, therefore,

A : U : : C : D.and of A and C there are taken any equimultiples, viz. pmA
and pmC, and of B and D, any equimultiples «fnB, 9nD, if ;>inA be greater

than qn\i, pmC must be greater than qnD (def. 5. 5.) ; if equal, equal ; and
if lc88. less. But pmA, pmC are also equimultiples of mA and mC, and

ynll. qnD are equimultiples of nB and nl), therefore (dcf. 5. 5.), mA : nB
: : mC : nD.

Cor. Jn the same manner it may be demonstrated, thnt if A : B : : C :

D. and of A and C equimultiples be taken by any number m, viz. mA and
mC, mA : B : : mC : D. This may also be coiu»tdercd as included in the

proposition, and as being the case when a=l.

PROP. V. THEOR.

If one ma^itude he the same multiple of another, urhieh a magnitude taken

from the first is of a magnitude taken from the other ; the remainder istho

same multiple of the remainder, that the tchole is of the vchole

I^tmA and mB be any equimultiples of the two magnitudes A and B,
of which A is greater tlian U ; mK—mH is tiie same multiple of A—B
that m.\ is of A, that is, mA—mHr=m(A— B)-

Let D be the excess of A above H, tlien A—B= D, and adding B to

both, A= D-|-B. Therefore (1. 5.) mA=rr/iD-f-mB ; take mB from both,

and mA—mB=mD ; but D=A— I), therefore m.\—inB=f«(A— B).

PROP. VI. THEOR.

Iffrom a multiple of a magnitude by any number a multiple of the same mag-
nitude by a less number be token atcay, the remainder trill be the same mui
tiple of thai magnitude that the difference of the numbers u of unity.

Let mA and n.K be multiples of the magnitude A, by the numbers m ami

, and let m be greater than n ; m.K—nA contains A as oft as m— n cou-

tains uuilv, or my\—nA=(m—n)A.
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Let m—n-=q; then Tn=.n-\-q. Therefore (2. 5.) /nA=HA+yA ; take

nA from both, and mA—nk=qX. Therefore rnA.—nA contains A as oft

as there are units in q, that is, in m— w, or mh.—nA= (»»

—

n)A..

CoR. "When the difference of the two numbers is equal to unity or m •

0=1, then 7nA—raA=A.

PROP. A. THEOR.

Iffour magnitudes be proportionals, they are proportionals also when taken

inversely.

If A : B : : C : D, then also B : A : : D : C.

Let mA. and mC be any equimultiples of A and C ; »B and raD any equi-

multiples of B and D. Then, because A : B : : C : D, if mk be less than

nB, ffiC will be less than nD (def. 5. 5.), that is, if wB be greater than mA,
nD will be greater than mC For the same reason, if nB=:mA, nD=mC,
and if raB^wA, uT) /^mC. But nB, nD are any equimultiples of B and D,

and mh., mG any equimultiples of A and C, therefore (def. 5. 5.), B : A •

D : C.

PROP. B. THEOR.

If the first he the same multiple of the second, or the same part of it, that the

third is of the fourth ; thefirst is to the second as the third to the fourth.

First, if mA, mB be equimultiples of the magnitudes A and B, mA : A :

mB : B.

Take of mA and mB equimultiples by any number n ; and of A and B
equimultiples by any number p ; these will be nmA (3. 5.),pA, ?imB (3. 5.),

pB. Now, if nmA be greater than pA, nm is also greater than p ; and i»

nm is greater than jo, nmB is greater than pB, therefore, when nmA is great

er than pA, nrnB is greater than pB. In the same manner, if nmA:=pA
nmB=pB, and if nmA/^pA, nrnB/^pB. Now, nmA, nmB are any equi

multiples of mA and fnB ; and ph., pB are any equimultiples of A and B
therefore mA : A : : mB : B (def. 5. 5.).

Next, Let C be the same part of A that D is of B ; then A is the same
multiple of C that B is of D, and therefore, as has been demonstrated, A :

: : B : D and inversely (A. 5.) C : A : : D : B.

PROP. C. THEOR.

If thefirst be to the second as the third to the fourth; and if the fin t be a
multiple or a part of the second, the third is the same multiple or the same
part of the fourth.

Let A : B : : C : D, and first, let A be a multiple of B, C is the same
multiple of D, that is, if A=mB, C=mD.
Take of A and C equimultiples by any number as 2, viz. 2A and 20

;

and of B and D, take equimultiples by the number 2m, viz. 2TnB, 2mY) (3.
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6.) ; then, because A=oiB,2A=2mB ; and since A : B : : C : D, and since

2A=2mB, therefore 2C=2i»iD (def. 5. 5.), and C=mD, that b, C contains

D, m limes, or as often as A contains B.

Next, Let A be a part ol B, C u the aame |»art of D. For, since A : B
• C : D, invenely (A. 5), B : A : : D : C. But A being a pan of B, B is

a multiple of A ; and therefore, as is shewn abore, D is the same multiple

of C, and therefore C is the same part of D that A is of B.

PROP. VII. THEOR.

Equmt wtagmitudi* ham tk$ mma rati» to the tamt maguitm^i ; mad tkt jmm
hat tk§MMM ratio to equal magaitudu.

Let A and B be equal ma^iiudea, and C any other; A : C : : B : C.

Let mA, mB, be any oquimuluples of A and B \ and nC any multiple

etc.
Because AsB, mAssmB (.\x. 1. d.) ; wherefore, if mA be greater than

nC, mB is greater than nC ; and ifm.\snC, mBssnC ; or, ifm.\/MC, mB
/ nC. But mA and mB are any equimultiples of A and B, and nC is any
multiple of C, therefore (def. 5. 5.) A : C : : B : C.

Again, ifAsB, C : A : : C : B ; for, a* has been piored, A : C : : B *

C, and inrerMly (A. 5.). C : A : : C : B.

PROP. VIII. THEOR.

Ofunequal atagnitudes, the grtattr has a greater ratio to tho tame thaa tha last

has ; and the same magnitude has a greater ratio to the less than it has la

thegroaiar.

Let A 4- B be a magnitude m<ter than A, and C a third magnitude,

A+ B has to C a greater ratio Uian A has lu C ; and C has a greater ratio

to A than it has to A-f B.

Let m be such a number that m\ and mB are each of tliem greater than

C ; and let nC be ibe least multiple of C that exceeds mA+mB ; then nC
—C, that is (n— 1)C (1. 5.) will bo less than m^V+ mB, or m.K+mli, that

is, m(A-f-B) is greater than (n— l)C. But because nC is greater than

*nA4*''iB, and C less than mB, nC—C is }{reaier thau mA, or mA is less

than nC— C, that is, than (n— l)C. Therefore the multiple of A-fB by
III exceeds the multiple of C by n— 1, hut the nuiltiple of A by m does not

exceed the multiple of C bv n— 1 ; therefore A-f-B lus a greater ratio to

•: than A has to C (def. 7. 5.).

Again, because the multiple of C by m— 1 . exceeds the multiple of A by
m, but does not exceed the multiple of A -f B by m, C has a greater ratio lo

k than it has to A+ B (def. 7. 5.).

15
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PROP. IX. TIIEOR.

Magnitudes which have the same ratio to the same magnitude are equal to uns

another ; and those to which the same magnitude has the same ratio are equal

to one another.

If A : C :: B : C,A=B.
For if not, let A be greater than B ; then because A js greater than B,

two numbers, m and n, may be found, as in the last proposition, such that

wiA shall exceed nC, while wB does not exceed nC. But because A : C
: : B : C ; and if otA exceed ?iC, mB must also exceed nC (def. 5. 5.) : and
it is also shewn that mB does not exceed nC, which is impossible. There-
fore A is not greater than B ; and in the same way it is demonstrated that

B is not greater than A ; therefore A is equal to B.

Next, let C : A : : C : B, A=B. For by inversion (A. 5.) \ : C : : B :

C ; and therefore, by the first case, A=B.

PROP. X. THEOR.

That magnitude, which has a greater ratio ttian another has to the same magnt-
tudc, is the greatest of the two : And that magnitude, to which the same has
a greater ratio than it has to another magnitude, is the least of the two.

If the ratio of A to C be greater than that of B to C, A is greater than B.
Because A : C/B : C, two numbers 7/i and n may be found, such that

wiAjnC, and mB/«C (def. 7. 5.). Therefore also ctA/otB, andA/B
(Ax. 4. 5.).

Again, let C : B/C : A; B/A. For two numbers, m and n maybe
found, such that mC/nB, and mCZ^A. (def. 7. 5.). Therefore, since nB
is less, and nA greater than the same magnitude mC,nBZnA, and there-
fore B/A.

PROP. XI. THEOR

Ratios tnat are equal to the same ratio are equal to one another.

If A : B : : C : D ; and also C : I) : : E : F ; then A : B : : E : F.
Take mA, mC, mE, any equimultiples of A, C, and E ; and nB, «D, 7i?,

any equimultiples of B, D, and F. Because A : B : : : D, if mkj nB,
mCynD (def. 5.5.) ; bulifmC/nD, mE77zF(def. 5. 5.), because C : D
: : E : F ; therefore if mA /nB, niE JnY. In the same manner, if otA=
«B,mE=nF; and if wA/nB, »jE/?iF. Now, mA, otE are any equi-
multiples whatever of A and E ; and 7iB, uY any whatever of B and F ,•

therefore A : B : : E : F (def. 5. 5.).
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PROP. XII. THEOR.

Ifany number of magnitudes be proportionals, as one of the antecedents u t^

its eoHsequentt to are all ike antecedents, taken togetker^ to aU tke conso'

quents.

I.'A : B : C : D, and C . D : . E : F ; ihen tlao, A : B : : A+C+E :

B+D+F.
Take mA, mC, mE any equimultiplea of A, C, and E ; and nB, nD, mF,

any rquimultiples of B, U, and F. Then, bocaose A : B : : C : D, if niA

7'nH,»nC7nD(def. 5. 5); and when rnC/nD, mE/iiF.becaoae C : D
:: E : F. Therefore, ifmA7aB,ii»A+mC+«E7iiB+iiD+fiF: In the

ame manner, if mA=nB, inA+inC+i'*E=sMB+"O+iiF ; and if aiA^
fiB, mA+mC+mE/nB-ffiD+iiF. Now, iiiA+MC+>»E=m(A+C-|-
£) (Cor. 1. 5.), ao Uiat mA and fnA4-0*C4-">E are anjr equimultiples of

A, and of A+C+E. And for tlie same reason aU, and nB+nD+aF are

any equimultiples of B, and of B+D+F ; therefore (drf 5. 5.) A : B :

:

A+C+E: B+D+F.

PROP. XIII. THEOR.

Iftkefirst kave to tke second the same ratia tekiek tke third has to thefourth,

but the third to the fourth a greater ratio than theffih has to the sixth ;

the first has also to the second a greater ratio than the fifth has to the sixth.

If A : B :: C : D; bote : D7E : F; then alio, A : B7E : F.

BecAUse C : D 7 E : F, there are two nambers m and n, such that mC /
mD, butmE/nF(def. 7. 5). Now.if mC7nD, MA7nB, because A : B
: : C : D. Therefore niA7nB, and mE/^aF, wherefore, A : B7E : F
(def. 7. 5).

PROP. XIV. THEOR.

Ifthffi
ana 1

Irst have to the second the same ratio vhieh the third has to thefounn,
and tf th^ first be greater than the third, the second shall be greater than

the fourth; if equal, equal ; and tf less, less.

If A : B :: C : D; then if A7C, B7D ; if A=3C,B=D; and if A/
C B/I).

First, let A7C ; then A : B7C : B (8. 5.), but A : B : : C • D, there-

fore C : I)7C : B (13. 5.), and therefore B7n (10. 5).

In tie Rarao manner, it is proved, that if A=C, B=sD ; and if -\/C,
B^I).

PROP. XV. THEOR.

Magnitudes lave the same ratio to one another which their equimultiples ha**^

If A and B be two magnitudes, and m any number, A : B . : mA : lyD.

Because A • B : : A : B (7. 5.) ; A : B : : A+ A : B+B (12. 5.). or A •
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B : : 2A : 2B. And in the same manner, since A : B : : 2A : 2B, A : B
: : A+2A : B+2B (12. 5.), or A : B : : 3A : 3B ; and so on, for all th«

equimultiples of A and B.
,

PROP. XVL THEOR.

Iffour magnitudes of the same kind be proportionals, they will also be pro-

pertionals when taken alternately^

If A : B : : C : D, then alternately, A : C . : B : D.

Take mA, mB any equimultiples of A and B, and nO, nD any equimul

tiples of C and D. Then (15. 5.) A : B : : mA : wB ; now A : B : : C .

D, therefore (11. 5.) C : D : : mA : mB. ButC : D : : nC : nD (15. 5.)

;

therefore mA : mB : : »C : nD (11. 5.) : wherefore if mA/nC, mB/nD
(14. 5.) ; if mA=nC, mB=nD, or if mA^nC, mB^nD ; therefore (def

5. 5.) A : C : : B : D.

PROP. XVII. THEOR.

If magnitudes, takenjointly, he proportionals, they will also be proportionah

when taken separately ; that is, if the frst, together with the second, havt

to the second the sa7ne ratio which the third, together with the fourth, has to

the fourth, the first will have to the second the same ratio which the thira

has to the fourth.

If A+B : B : : C+D : D, then by division A : B : : C : D.
Take mA and nB any multiples of A and B, by the numbers m and n

;

and first, let mA^nB : to each of them add mB, then mA-{-mB 7mB+nB.
But mA+mB=m(A+B) (Cor. 1. 5.), and mB+nB=(m+n)B (2. Cor. 2.

5.), therefore m(A+B)7(m+n)B.
And because A+B : B :: C+D : D, if m(A+B)7(m+ra)B, m(C+ D)

7(m+n)D, or mC+mD/mD+ nD, that is, taking m,D from both, mC/
nD. Therefore, when mA is greater than nB, mC is greater than nD. In
Uke manner it is demonstrated, that if mA=nB, mC=nD, and if mA/nB,
that mD/nD ; therefore A : B : : C : D (def. 5. 5.).

PROP. XVIII. THEOR.

Jfmagnitudes, taken separately, he proportionals, they will also beproportion-
als when taken jointly, that is, if the first be to the second as the third to the

fourth, the first and second toget/ier will be to the second as the third and
fourth together to the fourth.

It A • B :
: C : D, then, by composition, A+B : B : : C+D : D.

Take m(A+B), and nB any multiples whatever of A+I3 and B; and
first, let m be greater than n. Then, because A+B is also greater than
B, m(A+ B)7nB. For the same reason, m(C+D)7nD. In this case,
therefore, that is, when m/n, m{A+B) is greater than nB, and m(C+ D)
IS greater than nD. And in the same manner it may be proved, that wbef>
m—n, m(A+B) is greater than nB, and m(C4-D^ greater than nD-
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Next, let m^«, or n7m, then m(A-f B) may be greater than nB, or may
be equal to it, or may b« letM; first, let in(A4-B) be greater than nB ; then

alao,mA+fnB7nB ; take mB, which is less than rB, from both, and mk
7nB—mB.or «A7(ii—••)B (6. 5.). But if «A7(n-w)B, mC7(n—m>
D, because A : B : : C : D. Now, (n—m)0=sMD—mD (6. 5.), therefor*

mC7rO—mD, and adding mD to both, mC-^-mDynD, that is (1. 5.^

»i(C+D)7«D. If, therefore, m(A+B)7«B,si(C4-D)7aD.
In the same manner it will be proved, that if m(A4-B)=fiB, «i(C+D)

=»D ; and if iii(A+B)/iiB, <C+D)/iiD ; therefore (def. 5. 5.), A-J-

B : B : : C+D : D

PROP. XIX. THEOR.

Ifa wkoU magmitudt ht to*wkeU^mt awmgmtmiitaktnfr^mtJmjirttutom
magnUudt Uktmfrcm Uhb •tktr ; tkt nmuMir will ts to iJb ttmamim at

tkt vkoU t0 tkt wkoU.

1/ A : B : : C : D, and ifC be less than A, A—C : B—D : : A : B.

Because A : B : : C : D, altemately(10.5.), A : C : : B: D ; and there-

fore by dirision (17. 5.) A—C : C : : B—D : D. Wherefore, again alter*

naiely, A~C : B—D ::C:D;b«iA:B::C:D, therefore (11. 5.) A
-C:B-D::A:D.

Cor. a—C : B^D : : C : D.

PROP. D. THEOR,

Iffiftr wtagmitmds* btpfptrhtmmht tkmf ers mUo ffoptrtiomah by cwMwrji^n,
that u, tk$jirH it UiU tmo$ss •tees tkt use—^, mt tk» third U iU sxcrs*

abo9t Uufomrtk,

If A : B : : C : D, by conrersioo, A : A—B : : C : C~D.
For. since A : B : : C : D. by division (17. 5.), A—B : B : : 0—D : D.

and inrersely (A. 5.) B : A—B : : D : C^D ; therefore, by composition

(18. 5), A : A—B :: C: 0— D.

Coa. In the same way, it may be proved that A : A+B : : C : C+D.

PROP. XX. THEOR.

Ifthtn b0 tknt magnitude*, and other three^ which tahen two and ttco, hat^

the tame ratio ; ^ the first he greater than the third, the fourth is greater

than the sixth ; if «<puU, ofuai ; and if less, less.

If there be three magnitudes. A, B, and C, and other three D, E, and F

;

and if A : B : : D : £ ; and also B : C :: E : F, then
if A7C,D7F; if A=C, D=F; and if A^C.D A, B, C,

D, E, F.

First,letA7C; then A : B7C : B(8. 5.). ButA : B : : D : E, there-

fore also D : E7C : E (13. 5.). Now B : C : : E : F, and inversely (A.
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5.), C : B : : F : E ; and it has been shewn that D : E/C : B, therefore

D : E/F : E (13. 5.), and consequently D/F (10. 5.).

Next,letA=C; then A : B : : C : B(7.5.),butA : B : : D : E ; there-

fore, C : B : : D : E, but C : B : : F : E, therefore, D : E : : F : E (: :.

5.), and D=F (9. 5.). Lastly, let A/C. Then C 7 A, and because, as

was already shewn, C : B : : F : E, and B : A : : E : D ; therefore, by tha

first case, if C / A, F / D, that is, if A/ C, D/ F.

PROP. XXL THEOR.

Ifthere be three magnitudes, and other three, which have the same ratio taken tvoo

and two, hut in a cross order; if thefirst magnitude be greater than the third,

the fourth is greater than the sixth; if equal, equal ; and if less, less.

If there be three magnitudes. A, B, C, and other three, D, E, and F,

such that A: B :: E: F, and B : C :: D : E; ifA/C.D/F; if A=C,
D=F; and if A/ C, D/F.

First, let A / C. Then A : B 7 C : B (8. 5.), but

A:B :: E : F, therefore E : F7C : B (13. 5.). Now,
B : C : : I) : E, and inversely, C : B : : E : D ; there-

fore,E : F7E : D (13. 5.), wherefore, D7F (10. 5.).

Next, let A=C. Then (7. 5.) A : B : : C : B ; but A : B : : E : F,

therefore, C : B : : E : F (11. 5.) ; but B : C : : D : E, and inversely, C

:

B : : E : D, therefore (11. 5.), E : F : : E : D, and, consequently, D=:F
(9. 5.).

Lastly, let A/C. Then C7A, and, as was already proved, C : B : .

E : D ; and B : A : : F : E, therefore, by this first case, since C7A, F 7
D, thatis, D^F.

PROP. XXIL THEOR.

If there be any number ofmagnitudes, and as many others, which, taken ttvo ana

two in order, have the same ratio ; the first will have to the last of thefirst

magnitudes, the same ratio which the first of the other has to the last*

First, let there be three magnitudes. A, B, C, and other three, D, E, F,

which, taken two and two, in order, have the same ratio, viz. A : B : : D :

E, and B : C : : E : F ; then A : C : : D : F.
Take of A and D any equimultiples whatever, mA, mD ; and of B and

D any whatever, nB, nF : and of C and F any whatever, ^C, qF. Because
A : B : : D : E, mA : nB : : TTiD : TiE (4. 5.) ; and
for the same reason, nB : qC : : nE : qF. Therefore
(20. 5.) according as mA. is greater than qC, equal to

it, or less, mD is greater than qF, equal to it, or

less ; but mA. mT) are any equimultiples of A and D
;

and ^C, qF are any equimultiples of C and F ; therefore (def. 5.5.), A : C
: : D : F.

Again, let there be four magnitudes, and other four which, taken two

• N. B. This proposition is usually cited by the words " ex a;qua!i,"or " ex sequo."

A, B, c,

D, E, F,

mA, nB, 9G,

mD, nF, qF.
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And two in order, hare the same ratio, viz. A:B:: £:F; B:C::F.
G ; C ; D : : G : H, then A : D : : E : H-

FoT, since A, B, C are three magnitudes, and

E, F, G other three, which, iaken two and two,

have the same ratio, by the foregoing case, A

A, B, C, D,
E, F, G. H.

U : : E : G. And becau&e also C : : : G : H, by that same case, A : D
: ; E : H. JU the same manner is the demonstration extended to any num-
lar of magnitudes.

PROP. XXIII THEOR,

Jf there be any number of magnitudes, <md as mamff tJurt, wAicA, taken two
' and tteo, in a cross order, kat>0 tke smme ratio ; thajtrtt wiii have to the last

of the first magnitudes tke saaie t^io irAicA the first of the others has to

the last.*

First, Let there be three magnitudes. A, B, C, and other three, D, £, and

F, which, taken two and two in a croes order* have the aauie ratio, vis. A
• B : : E : F, and B : C : : D : E, then A : C : ; D : F. Take of A, B,

and D, any equimtUtiples mA, mB, mD ; and of C, £, F any equimuhiples

nO, fiE, rF.

Because A : B : : £ : F, and because also A : B : : mA : mB (15. 5.),

and E : P : : nE : nF ; therefore, mA : mB : : »B : rF (11. 5.). Again,

because B : C : : D : E, mB : nC : : mD : nE (4.

b.) ; and it has been just shewn that m\ : mB :

:

rE ; nF; therefore,if mA7nC,mD7nF(!2l.3.);
if jrAsrC, mDssnF; and if mA/RC, mD^aF.
Now, mA and mD are any equimultiples of A and

D, and nC, nF any equimultiples of C and F ; therefore, A : C : : D : F
(def. 5. 5.).

Next, Let there be four magnitudes, K, B, C. and D, and other four, E,

F, G, and If, which, taken two and two in a cross order, hare the same
ratio, viz. A : n : : G : H ; B : C : : F : G, and

A. b; cT]
D. E. F,

\
mA, mB, nC, >

ml), nB, nF.

C : D : : E : F, then, A : D : : E : H. For.since A, B, C, D,
|

A, B, C, are three magnitudes, and F, G, H, other E. F. G, H.
j

three, which, taken two ^nd two, in a cross order,

have the same ratio, by the first case, A : C : : F : IL But C : D : : E :

F, therefore, again, by the first case, A : D : : E : H. In the same manner

may the demonstration be extended to any number of magniiudes

PROP. XXIV. THEOR.

If thefirst has to the second the same ratio ichieh the third has to the fmirth ,

ana thefifth to the second, the same ratio ichich the sixth has to the fiurth ,

thefirst and fifth together, shall have to the second, the same ratio which

the third and sixth together, have to thefottrth.

Let A : B : : C : D. and also E : B : : F : D, then A+ E • B : : C+ F : D.

* N. B. Thia propMiiinn la uaualljr ciuxl \jj the worda " ex K(4u«1i m }<fo|>urtioiir partiu

b«U ;" or, **M ••juo inveraely."
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Because E : B : : F : D, by inversion, B : E : : D : F. But by hypo-

thesis, A : B : : C : D, therefore, ex aequali (22. 5.), A : E : : C : F ; and

by composition (18. 5.), A+E : E : : C-fF : F. And again by hypothe-

sis, E : B : : F : D, therefore, ex aequali (22. 5.), A-fE : B : : C+F : D.

PROP. E. THEOR.

IfJour magnitudes be proportionals, the sum of the Jlrst two is to their diff»»

rence as the sum of the other two to their difference.

LetA : B :: C : D; thenifA/B,
A+B : A—B :: C-f-D : C—D; orifA/B
A+B : B—A : : C+D : D— C.

For, if A/B, then because A : B : : C : D, by division (17. 5.),

A—B : B . : C—D : D, and by inversion (A. 5.),

B : A—B : : D : C—D. But, by composition (18. 5.),

A4-B:B::C-t-D:D, therefore, ex aequali (22. 5.),

A+B : A-B : : C+D : C-D.
In the same manner, if B / A, it is proved, that

A+B : B-A : : C+D : D-C.

PROP. F. THEOR.

Ratios which are compounded of equal ratios, are equal to one anothet.

Let the ratios of A to B, and of B to C, which compound the ratio of A
to C, be equal, each to each, to the ratios of D to E, and E to F, which com-
pound the ratio of D to F, A : C : : D : F.

For, first, if the ratio of A to B be equal to that of

D to E, and the ratio of B to C equal to that of E to

F, ex aequali (22. 5.), A : C : : D : F.

And next, if the ratio of A to B be equal to that of E to F, and the ratio

of B to C equal to that of D to E, ex aequali inversely (23. 5.), A : C : : D
: F. In the same manner may the proposition be demonstrated, whatever
be the number of ratios.

PROP. G. THEOR.

Ifa magnitude measure each of two others, it mil also measure their sum and
difference.

Let C measure A, or be contained in it a certain number of times ; 9 times
for instance : let C be also contained in B, suppose 5 times. Then A= 9C,
and B=5C ; consequently A and B together must be equal to 14 times C,
so that C measures the sum of A and B ; likewise, since the dift'erence of

A and B is equal to 4 times C, C also measures this difference. And had
any other numbers been chosen, it is plain that the results would have been
similar. For, let A=7nC, and B=nC ; A+B= (»»+«)€, and A—B=
(»n-n)C.

Cor. IfC measure B, and also A— B, or A+B, it must measure A, for

the sum of B and A—B is A, and the difference of B aod ^ V-B is also A

A, B, C,

D, E, F.
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BOOK VI.

DEFINITIONS

1. SiHiLAK rectiKneal Aran* mre

dxw which hmve their leTerml

angles equal, Mch to each, and
the Bides about the equal angles

proportionals.

In two similar figures, the ndea which lie adjacent le equal angle*, are

called homologous sidea. Those angles themselTcs are called homo>

lofooi angiee. In diflerent cirele«, tmiimt are$t 9M»e^»^ and Mgmtmtt^

«i« dioae of which the arcs subtend equal taglea at ibo centra. Two
equal figurea are alwajrs aimilar ; but two atimlar Sgvras nuy ba very

aneqoal.

S. Two aidea of one figure are aaid lo be reciprocally proportional to two

sidaa of another, when one of the sides of the first is to one of the

aidea of the second, as the remaining side of the second is to the re-

maining side of the firsL

3. A straight line is said to be cut in extreme and mean ratio, whe« the

whole is to the greater segment, as the greater segment is to the less.

4. The mltttMtU of a triangle is the straight line

drawn from ita vertex perpendicular to the base.

The altitude of a parallelogram is the perpendicu-
lar which measures the distance of two oppo-
site aides, uken as bases. And the altitude of

a trapezoid is the perpendicular drawn between
ha two parallel sides.

PROP. I. THEOR.

Tnam^tf and parattelogrami, of the same altitude^art one to another a* thetr

hates.

Let the triangles ABC, ACD, and the parallelograms EC, CF have mo
aame altitude, riz. the perpendicular drawn from the point A to BD : Then,

16
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as the base BC, is to the base CD, so is the triangle ABC to the triangle

ACD, and the parallelogram EC to the parallelogram CF.

Produce BD both ways to the points H, L, and take any number of

straight lines BG, GH, each equal to the base BC; and DK, KL, any

number of them, each equal to the base CD ; and join AG, AH, AK, AL.
Then, because CB, BG, GH are all equal, the triangles AHG, AGB, ABC
are all equal (38, 1.) ; Therefore, whatever multiple the base HC is of the

base BC, the same multiple is the triangle AHC of the triangle ABC. For

the same reason, whatever the base LC is of the base CD, the same mvl-

tiple is the triangle ALC of

the triangle ADC. But if E A V
the base HC be equal to the

base CL, the triangle AHC
is also equal to the triangle

ALC (38. I.) : and if the

base HC be greater than the

base CL, likewise the trian-

gle AHC is greater than the

triangle ALC ; and if less,

less. Therefore, since there

are four magnitudes, viz. the two bases BC, CD, and the two triangles

ABC, ACD ; and of the base BC and the triangle ABC, the first and third,

any equimultiples whatever have been taken, viz. the base HC, and the

triangle AHC ; and of the base CD and triangle ACD, the second and
fourth, have been taken any equimultiples whatever, viz. the base CL and
triangle ALC ; and since it has been shewn, that if the base HC be greater

than the base CL, the triangle AHC is greater than the triangle ALC ;

and if equal, equal ; and if less, less ; Therefore (def. 5. 5.), as the base

BC is to the base CD, so is the triangle ABC to the triangle ACD.
And because the parallelogram CE is double of the triangle ABC (41.

1.), and the parallelogram CF double of the triangle ACD, and because
magnitudes have the same ratio which their equimultiples have (15. 5.) ;

as the triangle ABC is to the triangle ACD, so is the parallelogram EC to

the parallelogram CF. And because it has been shewn, that, as the base

BC is to the base CD, so is the triangle ABC to the triangle ACD ; and
as the triangle ABC to the triangle ACD, so is the parallelogram EC to

the parallelogram CF ; therefore, as the base BC is to the base CD, so is

(11. 5.) the parallelogram EC to the parallelogram CF.

Cor. From this it is plain, that triangles and parallelograms that have
equal altitudes, are to one another as their bases.

Let the figures be placed so as to have their bases in the same straight

line ; and having drawn perpendiculars from the vertices of the triangles to

the bases, the straight line which joins the vertices is parallel to that in

which their bases are (33. 1.), because the perpendiculars are both equal
and parallel to one another. Then, if the same construction be made as in

the proposition, the demonstration will be the same.
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PROP. II. THEOR.

Ij a straight Une bt irmm paraltei tooMoftke sides ofa triangle^ it wiOaU
the other sides, or the other sides produced, proportionally : And if tks

sides, or the sides produced, be cut proportionally, the straight line which

joins the points of section wiU be parallel to the remaining side of the tri-

angle

.

Let DE be drawn parallel to DC, one of the side* of the triangle ABC

:

BD is to DA asCE toEA.
Join BE, CD ; then the triangle BDE is equal to the triangle CDE (37.

1.), because they are on the same base DE and between the sune peral*

lels DE, BC : but ADE is another triangle, and eqial negnitades hwre,

to the same, the same ratio (7. 5.) ; thererore, as the triangle BDE lo the

triangle ADE, so is the triangle CDE to the triangle ADE; but as the

triangle BDE to the triangle ADE, so is (1. 6.) BD to DA, because, hav-

ing the same altitude, viz. the perpendicular drawn from the point £ to AB,
they are to one another as their besee ; and for the same reason, as the

triangle CDE to the uianglu ADE, so is CE to EA. Therefore, as BD
to DA, so is CE to EA (11. 5.).

Next, let the sides AB, AC of the triangle ABC, or these sides produced.

be cut proportionally in the points D, E, that is, so that BD be to DA, as
CE to EA. and join DE ; DE is parallel to BC.
The same construction being made, because as BD to DA, sit is CE to

EA; and as BD to DA, so is the triangle BDE tothetrian«r!e \DE(1. 6.):
and as CE to EA, so is the triangle CDE to the triangle ADE ; therefore
the trianfrle BDE, is to the triangle ADE, as the triangle CDE to the tri-

angle ADE ; that is, the triangles BDE, CDE hare the same ratio to the
triangle ADE ; and therefore (9. 5.) the triangle BDE is equal to the tri-

angle CDE : And they are on the same base DE ; bm equal trianfjles on
the same base are between the same parallels (39. 1.); therefore DE is

parallel to BC.



124 ELEMENTS

PROP. III. THEOR.

Ifthe angle of a triangle be bisected by a straight line which also cuts the base ;

the segments of the base shall have the same ratio which the other sides of

the triangle have to one another ; And if the segments of the base fiave the

sam£ ratio which the other sides ofthe triangle have to one another, the straight

line drawn from the vertex to the point of section, bisects the vertical angle.

Let the angle BAG, of any triangle ABC, be divided into two equal an-

gles, by the straight line AD ; BD is to DC as BA to AC.
Through the point C draw CE parallel (Prop. 31. L) to DA, and let BA

produced meet CE in E. Because the straight line AC meets the paral-

lels AD, EC, the angle ACE is equal to the alternate angle CAD (29. 1.)

:

But CAD, by the hypothesis, is equal to the angle BAD ; wherefore BAD
is equal to the angle ACE. Again,

because the straight line BAE meets

the parallels AD, EC, the exterior an-

gle BAD is equal to the interior and
opposite angle AEC ; But the angle

ACE has been proved equal to the an-

gle BAD ; therefore also ACE is

equal to the angle AEC, and conse-

quently the side AE is equal to the

side (6. 1.) AC. And because AD is

drawn parallel to one of the sides of

the triangle BCE, viz. to EC, BD is

to DC, as BA to AE (2. 6.) ; but AE is equal to AC ; therefore, as BD to

DC, so is BA to AC (7. 5.).

Next, let BD be to DC, as BA to AC, and join AD ; the angle BAG is

divided into two equal angles, by the straight line AD.
The same construction being made • because, as BD to DC, so is BA

to AC ; and as BD to DC, so is BA
to AE (2. 6.), because AD is paral-

lel to EC : therefore AB is to AC, as

AB to AE (11. 5.) : Consequently
AC is equal to AE (9. 5.), and the

angle AEC is therefore equal to the
angle ACE (5. 1.). But the angle
AEC is equal to the exterior and op-
posite angle BAD ; and the angle
ACE is equal to the alternate angle
CAD (29. 1.): Wherefore also the
angle BAD is equal to the angle
CAD : Therefore the angle BAC is cut into two equal angles by the straight

Ui\e AD.
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PROP. A. THEOR.

f tk4 exterior angU o/m triangU ht hittcted km a strmgkt lime wkiek alM euta

the base produced; tksttgmnd* heiWMm tk§int0eti$tg htumtdtkt extrtmiti*9

tftk$ base have the smm ratio wkiek tk§ otitr tid»» ofthe trimtgUs have to

one another; Andiftko oogwmOo of thoboaofroio todkmootkooame rotio

wkkhthe other sidooeftUtrimtgloo kmoo^tko strmgkt hm,inHmfrom A»
oortom to the poimt of section^ buects the exterior amgle of the trtmngU,

Let the exterior angle CAE, of any triaa^e ABC, be bisected by tb*
alraight line AD which neetathe baae produced ia D ; BD is to DC, as
BA to AC.
Through C draw CF parallel to AD (Prop. 31. 1.) : aad bacausa dis

traight line AC maou tlie paralleb AD, PC, the angle ACF is e<|iMi to

the alternate angle CAD (29. 1): But CAD is equslto the sngle DAB
(Hjrp.) : therefore also DAE ia eqaal to the angle ACF. Again, becauao
the straight hne FAE meeu the parallels A D, FC, the exterior angle DAE
ia eqiuU to the interior and opposite angle CFA; But the angle ACF haa
been proved to be eqaal to the an-

gle DAE ; therefore also the angle

ACF is equal to the angle CFA,
aad conncquently the side AF ia.

equal to the side AC (6. 1.); and,

becauae AD ia parallel to FC, a
side of the uiaagis BCF, BD is to

DC, as BA to AF (2. 6.) ; but AF
is equal to AC ; therefore as BD
is to DC. so is BA to AC.
Now let BD be to DC, aa BA to AC, and join AD ; the angle CAD is

equal to the angle DAE.
The same construction being msde, because BD is to DC as BA to AC

;

and also BD to DC, BA to AF (2. 6. ) ; therefore BA is to AC, ss BA to

AF r II. 5.), wherefore AC is equal to AF (9. 9), and the anffle AFC
equal (5. 1.) to the angle ACF : but the angle AFC is equal to the exte-

rior angle EAD, and ue angle ACF to the alternate angle CAD ; there-

fore also EAD is equal to the angle CAD

PROP. IV. TIIEOR.

7^ sides about the equal angles ofequiangular triangUs areproporttcnnls ; ana
those tJuch are opposite to the equal angles are homologous stdrs, that is, ate

the antecedents or consequents of the ratios

IjCX ABC, DCE.be equiangular trianitles, harin? the angle ABC equal
lo the angle DCE, and the angle ACB to the angle DEC, and conse-
quently (4. Cor. 32. 1.) the angle BAC equal to the angle CDE. The
sides about the equal angles of ibe triangles ABC, DCE are proportionals

,

and those are the homologous sides which are opposite to the equal an*

gles.
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Let the triangle DCE be placed, so that its side CE may be contiguous

to BC, and in the same straight line with it : And because the angles ABC,

ACB are together less than two right angles (17. 1.), ABC and DEC,
which is equal to ACB, are also less than

two right angles : wherefore BA, ED pro-

ducedshallmeet(lCr.29.1.);letihembepro-

duced and meet in the point F ; and because

llie angle ABC is equal to the angle DCE,
BF is parallel (28. 1.) to CD. Again, be-

cause the angle ACB is equal to the angle

DEC, AC is parallel to FE (28. 1.) : There-

fore Fx\CD is a parallelogram ; and conse-

quently AF is equal to CD, and AC to FD
(34. 1.) : And because AC is parallel to FE,
one of the sides of the triangle FBE, BA
AF is equal to CD ; therefore (7. 5.) BA :

nately, BA : BC : : DC : CE (16. 5.)

BF, BC : CE : : FD

B O E
AF : : BC : CE (2. 6.) : but

CD : : BC : CE ; and alter-

Again, because CD is parallel to

DE (2. 6.) ; but FD is equal to AC ; therefore BC
CE : : AC : DE ; and alternately, BC : CA : : CE : ED. Therefore

because it has been proved that AB : BC : : DC : CE ; and BC ' CA
CE : ED, ex aequah, BA : AC : : CD : DE.

PROP. V. THEOR.

If the sides of two triangles, about each of their angles, he proportionals, the

triangles shall he equiangular, and have their equal angles opposite to tlie

homologous sides.

Let the triangles ABC, DEF have their sides proportionals, so that AB
is to BC, as DE to EF ; and BC to CA, as EF to FD ; and consequently

ex aequali, BA to AC, as ED to DF ; the triangle ABC is equiangular to

the triangle DEF, and their equal angles are opposite to the homologous
sides, viz. the angle ABC being equal to the angle DEF, and BCA to

EFD, and also BAC to EOF.
At the points E, F, in the straight

line EF, make (Prop. 23. l.)the an-

gle FEG equal to the angle ABC,
and the angle EFG equal to BCA,
wherefore the remaining angle BAC
is equal to the remaining angle
EGF (4. Cor. 32. 1.), and the trian-

gle ABC is therefore equiangular to

the triangle GEF ; and consequently
they have tneir sides opposite to the

equal angles proportionals (4. 6.).

Wherefore,

AB : BC : : GE : EF ; but by supposition,
AB : BC : : DE : EF, therefore,

DE : EF : : GE : EF. Therefore (11. 5 ) DE and GE havt
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th« Mine ratio to EF, and consequently are equal (9. 5.). For the same
reason, DF' is equal to FG : And because, in the triangles DEF, GEF
DE i« equal to EG, and EF common, and also the base DF equal to the

base CF ; therefore the angle DEF is equal (8. l.)to the angle GEF, and
the other angles to the other angles, which are subtended by the equal

fides (4. I.)- Wherefore the angle DFE is equal to the angle GFE, and
EDF to EGF: and because the angle DEF is equal to the angle GEF,
and GEF to the angle ABC ; therefore the angle ABC is equal to the aiw

He DEF: For the same reason, the angle ACB is equal to the angle

1)FE, and the angle at A to the angle at D. Therefore the triangle ABC
is equiangular to the triangle DEF.

PROP. VI. THEOR.

If two triangles have one angle t^ the one e^ial to one angle of the other, amd
the sidfs about the e<pial angles propt/rtumals, the tnangtes shall be npttan-

gylar, and shall have those angles equal tchich are opposite to the homolo-
gous sides.

Lei the triangles ABC, DEF hare the angle BAC in the one equal to

the angle EDF in the other, and the sides about those angles profiortion-

als ; that is, BA to AC, as ED to DF ; the triangles ABC, DEF are equi«

angular, and have tile angle ABC equal to the angle DEF, and ACB to

DFE.
.\t the points D, F, in the

straight line DF, nuke (Prop.

23. 1 .) the angle FDG equal to

either ofthe angles BAC, EDF

;

and the angle DFG equal to the

anifle ACB; wherefore the re<

mnming angle at B is equal to

the remaining one at G (4. Cor.

32. 1.), and consequently the

triangle ABC is equiangular to

the triangle DGF ; and therefore

BA : AC : : GD (4. 6.) : DF. But by hypothesis,
BA : AC : : ED : DF ; and therefore

ED : DF : : GD : (11. 5.) DF ; wherefore ED is equal (9. 5.) u>

DG ; and DF is common to the two triangles EDF, GDF ; therefore the
two sides ED, DF are equal to the two sides GD, DF; but ilio angle
EDF is also equal to the angle GDF; wherefore the base EF isequalte
the base FG (4. 1.), and the triangle EDF to the trianffle GDF, and ihe
remaining angles to the remaining angles, each to each, which are sulv
tendotl by the equal sides : Therefore the angle DFG is equal lo ihrt ancle
DFE, and the angle at G to the anjjle at E : Bui the angle DVG is equal
to the angle ACB ; therefore the angle ACB is equal the angle DFE, ami
the angle BAC is equal to the angle EDF (Hyp )

; wherefore also the re-

maining angle at B is equal to the remaining ariyie at E. Therefore the
triangle ABC is equiangular to the triangle DEF
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PROP. VII. THEOR.

If two triangles have one angle of the one equal to one angle of the other, and

the sides about two other anglesproportionals, then, if each of the remaining

angles be either less, or not less, than a right angle, the triangles shall be

equiangular, and have tAyse angles equal about which the sides are propor-

tionals.

Let the two triangles ABC, DEF have one angle in the one equal to one

angle in the other, viz. the angle BAG to the angle EDF, and the sides

about two other angles ABC, DEF proportionals, so that AB is to BC, aa

DE to EF ; and, in the first case, let each of the remaining angles at C, F,

be less than a right angle. The triangle ABC is equiangular to the tri-

angle DEF, that is, the angle ABC is equal to the angle DEF, and the

remaining angle at C to the remaining angle at F.

For, if the angles ABC, DEF be not equal, one of them is greater than

the other : Let ABC be the greater, and at the point B, in the straight

line AB, make the angle ABG equal

to the angle (Prop. 23. L) DEF: and

because the angle at A is equal to the

angle at D, and the angle ABG to

the angle DEF ; the remaining an-

gle AGB is equal (4. Cor. 32. 1.) to

the remaining angle DFE ; There-
fore the triangle ABG is equiangular

to the triangle DEF
;

wherefore (4. 6.), AB : BG : : DE : EF ; but,

by hypothesis, DE : EF : : AB : BC, '

therefore, AB : BC : : AB : BG (XL 5.),

and because AB has the same ratio to each of the lines BC, BG ; BC is

equal (9. 5.) to BG, and therefore the angle BGC is equal to the angle
BCG (5. 1.) ; But the angle BCG is, by hypothesis, less than a right an-
gle ; therefore also the angle BGC is less than a right angle, and the adja-

cent angle AGB must be greater than a right angle (13. 1.). But it was
proved that the angle AGB is equal to the angle at F ; therefore the angle
at F is greater than a right angle : But by the hypothesis, it is less than a
right angle ; M'hich is absurd. Therefore the angles ABC, DEF are not
unequal, that is, they are equal : And the angle at A is equal to the angle
at D ; wherefore the remaining angle at C is equal to the remaining angle
at F ; Therefore the triangle ABC is equiangular to the triangle DEF.

Next, let each of the angles at C, F be not less than a right angle ; the
triangle ABC is also, in this case, equiangular to the triangle DEF.
The same construction being

made, it may be proved, in like J^
manner, that BC is equal to BG, ^^ .|-,

and the angle at C equal to the y^"^ I \}
angle BGC : But the angle at C y^ / y^
is not less than a right angle

; y^^^--^^ ^'^ /
therefore the angle BGC is not "^ ' >=i— r^

less than a right anelc : vVhere- lil C E JB^



OF GEOMETRY. BOOK VI. 139

fore, two angles of the triangle BGC are together not less than two right

angles, which is unpossible (17. 1.) ; and therefore the triangle ABC may
be proved to be equiaoguUr to the triangle D£F, as in the &rst case.

PROP. VIII. THEOR.

/« a right angled triangle if a jutrpendieular be drateu from the nght angle U
the base ; the triangles on each side ofU are similar to the whole triangle^

and to one another.

Let ABC be a right angled triangle, having the right angle BAG ; and

from the point A let AD be drawn perpendicular to the base BC : the trian-

gles ADD, ADC are similar to the whole triancle ABC, and to one another.

Because the angle BAG is equal to the angle AUB, each of them being

a right angle, and the angle at B com-
mon to the two triangles ABC, ABD

;

the remaining angle ACB b equal to

the remaining angle BAD (4. Cor. 32.

1.): therefore the triangle ABC is

equiangular to the triangle ABD, and

the sides about their equal an^es are

proportionals (4. 6.) ; wherefore the

triangles are •imikrMef. I. 6.). In

like manner, it may be demonstrated, that the triaxigle ADC ta eqoiangulai and
similar to the triangle ABC : and tho triangles ABD, ADC, being each eqiti>

angular and similar to ABC, and equiangular and similar to one another.

CoK. I^'rom this it is manifest, that the perpendicular, drawn from the

right angle of a right angled triangle, to the base, is a mean proportional

between the segments of the base ; and also that each of the sides is a mean
proportional between the base, and its segment adjacent to that side. For
in the triangles BD.\, ADC,

BD : DA : : DA : DC (4. 6.) ; and in the

triangles ABC, BDA, BC : BA
triangles ABC, ACD, BC : CA

BA : BD (4. 6.) ; and in Uk
CA : CD (4. 6.).

PROP. IX. PROB.

Frvm a given straight line to cut offany part required, that if, a part ichuh

shalibe eontained in U a given number of tunes.

Let AB be the giren straight line ; it is required

to cut off from AB, a part which shall be contained

in it a given number of times.

From the point A draw a straight line AC mak-
ing any angle with AB ; and in AC take any point

1), and take AC such that it shall contain AD, as

oft as AB is to contain the part, which is to be cut

off from it
; join BC, and draw DE parallel tu it:

then A E is the part required to be cut otf.

Because ED is parallel to one of the sides of the

17
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triangle ABC, viz. to BC, CD : DA : : BE : EA (2. 6.) ; and by composi-

tion (18. 5), CA : AD : : BA : AE : But CA is a multiple of AD ; there-

fore (C. 5.) BA is the same multiple of AE, or contains AE the same num-

ber of times that AC contains AD ; and therefore, whatever part AD is of

AC, AE is the same of AB ; wherefore, from the straight line AB the par*

required is cut off.

PROP. X. PROB.

To divide a given straight line similarly to a given divided straight line, that is,

into parts that shall have the same ratios to one another which the parts of
the divided given straight line have.

Let AB be the straight line given to be divided, and AC the divided line,

It is required to divide AB similarly to AC.
Let AC be divided in the points D, E ; and let AB, AC be placed so as

to contain any angle, and join BC, and through the points D, E, draw
(Prop. 31. 1.) DF, EG, parallel to BC ; and
through D draw DHK, parallel to AB ; there-

fore each of the figures FH, HB, is a parallelo-

gram : wherefore DH is equal (34. 1.) to FG,
and HK to GB : and because HE is parallel

to KC, one of the sides of the triangle DKC,
CE : ED : : (3. 6.) KH : HD ; But KH=BG,
and HD = GF ; therefore CE : ED : : BG :

GF ; Again, because FD is parallel to EG,
one of the sides of the triangle AGE, ED : DA
: : GF : FA ; But it has been proved that CE
:ED: -- —
to AC.

B K O
BG : GF; therefore the given straight lineAB i.«j divided similarly

PROP. XL PROB.

Tofind a thirdproportional to two given straight lines.

Let AB, AC be the two given straight lines, and let them be placed so
as to contain any angle ; it is required to
find a third proportional to AB, AC.

Produce AB, AC to the points D, E ; and
make BD equal to AC ; and having joined
BC, through D draw DE parallel to it (Proo
31.1.) ^ ^

Because BC is parallel to DE, a side of
the triangle ADE, AB : (2. 6.) BD . : AC :

CE ; but BD=AC: therefore AB : AC ; •!

AC : CE. Wherefore to the two given
straight lines A7^, ACa third proportional,
C£ IS found.
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PROP. XII. PROB.

T^Jittd afourth proportional to tMrtt given straight lines.

Let A, B, C b« the three given straight lines ; it is required to find %
fourth proportionai to A^ B, C.
Take two straight lines DE, DP, containing anyaa^e £DP ; and upon

these make DG equal to A, GE equal to B, and DH eoual to C ; and haT-
iog joined OH, draw £F parallel (Prop. 31. 1.) to it through the point £

And because GH is parallel to EF, one of ths sides of the trisAgls DEF,
DG : GE : : DH : HP (3. 6.) : bnt DG«A. GE»B. and Dlf«C ; and
UMfcfore A : B : : C : HP. Wherefore to ths thrss given straight Unes,
A, B, C, a foonh proportional HP is found.

PROP. Xni. PROB.

Tofind a moan proportional betwoon two given straight line*.

Let AB, BC bs ths two given straight lines ; it is required to find a msab
proportional between thsm.

Place AB, BC in a straight line, and upon AC describe the semicircle
ADC, and from the point B (Prop. 1 1.

1.) draw BD at right angles to AC, and
join AD, DC.

Because the angle ADC in a semi-
circle is a ri^bt angle (31. 3.) and be-

cause in the right angled triangle ADC,
DB is drawn from the right angle, per-

pendicular to the base, DB is a mean
proportional between AB, BC, the seg-
ments of the base (Cor. 8. 6 ) ; therefore between the two given straighi
lines AB, BC, a mean proportional DB is found.
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PROP. XIV. PROB.

Equal parallelograms which have one angle of the one equal to one angle of
the other, have their sides about the equal angles reciprocally proportional

:

And parallelograms which have one angle of the one equal to one angle of
the other, and their sides about the equal angles reciprocally proportional^

are equal to one another.

Let AB, BC be equal parallel-

ograms, which have the angles at B
equal, and let the sides DB, BE be

placed in the same straight line

;

wherefore also FB, BG are in one
straight line (14. 1.) ; the sides of the

parallelograms AB, BC, about the

equal angles, are reciprocally propor-

tional ; that is, DB is to BE, as GB
toBF.

Complete the parallelogram FE ; and because the parallelograms ABt
BC are equal, and FE is another parallelogram,

AB : FE :: BC: FE (7.5.):
but because the parallelograms AB, FE have the samp altitude,

AB : FE : : DB : BE (1. 6.), also,* BC : FE : : GB : BF (1. 6.) ; therefore

DB : BE : : GB : BF (11. 5.). Wherefore, the sides
of the parallelograms AB, BC about their equal angles are reciprocally pro-
portional.

But, let the sides about the equal angles be reciprocally proportional, viz.

as DB to BE, so GB to BF ; the parallelogram AB is equal to the parallel-

ogram BC.
Because DB : BE : : GB : BF, and DB : BE : : AB : FE, and GB :

BF : : BC : EF, therefore, AB : FE : : BC : FE (11. 5.) : wherefore th«
parallelogram AB is equal (9. 5.) to the parallelogram BC.

PROP. XV. THEOR.

Equal triangles which have one angle of the one equal to one angle of the
other have their sides about the equal angles reciprocally proportional ; And
triangles which have one angle in the one equal to one .angle in the other,

and their sides about the equal angles reciprocally proportional, are equal
to one another.

Let ABC, ADE be equal triangles, which have the angle BAC equal to
tie angle DAE : the sides about the equal angles of the triangles are re-
ciprocally proportional ; that is, CA is to AD, as EA to AB.

Let the triangles be placed so that their sides CA, AD be in one straight
line

; wherefore also EA and AB are in one straight line (14. 1.) ; join BD.
Because the triangle ABC is equal to the triangle ADE, and ABD is an-
other triangle; therefore, triangle CAB : triangle BAD : : triangle EAD
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. mangle BAD ; but CAB :

BAD::CA : AD.mndEAD:
BAD : : EA : AB ; therefore

CA: AD:: EA: AB(11.5),
wherefore the sides ofthe trian-

gles ABC, ADE about the equal

angles are reciprocally propor*

tional.

But let the sides of the trian-

gles ABC, ADE, about the

equal angles be reciprocally

proportional, riz. CA to AD, as

EA to AB ; Uie triangla ABC is

equal to the triangle ADE.
llaring ^ined BD as before ; becaaM CA : AD : : EA : AB ; and since

CA : AD : : trian^ ABC : triaaglo BAD (1. 6.) ; and also EA : AB :

.

triangle EAD : triangle BAD Ml. 5.) ; therefore, trian^e ABC : thanglv

BAD : : triangle EAD : triangle BAD ; that ia, the triangles ABC. EaD
hare the same ratio to the triangle BAD ; wherefore the triangle ABC is

equal (9. 5.) to the triangle EAD.

PROP. XVI. THEOR.

Iffvwr straigkt Umuht/nptrtmrnali^ lk§netai^ emtmm ti hy IktMimm tu
equal to tkt reetamgU c^mtmmtd hjf tktw—w ; Ami tftMtnOanfi ttmlmmtJ

bff tkt ttctrtmu M sywW l# iW rnimigU c^mlmntm bf tkt moans, thafaur

ttrmigkt kmu mnprtpcrtimmU.

Let the four straight lines, AB, CD, E, F, be proportionals, ris. as AH
to CD, so £ to F ; uie rectangle contained by AB, F is equal to the red
angle contained by CD, E.
From the points A, C draw(n. I.)AG, CH at risht angles to AB, CD

;

and make AG equal to F, and CH equal to £, ana complete the parallel-

ograms BG. DH. Because AB : CD : : E : F ; and since E=CH, and
F=AG, AB : CD (7. 5.) : : CH : AG ; therefore the sides of the parallel-

ograms DC, DH about the equal angles are reciprocally proportional ; but

parallelograms wbich have their sides about eqtul angles reciprocally pro-

portional, are equal to one another (14. 6.); therefore the parallelogrsm

BG is equal to the parallelogram DH : ]g
and the parallelogram BG is contain-

ed by the straight lines AB, F : be- "£*-

cause AG is equal to F ; and the pa-

rallelogram DH is contained by CD
and E, because CH is equal to E

:

therefore the rectangle contained by
the straight lines AB, F is equal to th^
i»hich is contained by CD and E. ^

And if the recungle contained by ^ B C
the straight lines AB, F be equal to that which is contained by CD, E ;

these foiu lines are proportionals, riz. ABistoCDasEtoF.
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The same construction being made, because the rectangle contained by

the straight lines AB, F is equal to that which is contained by CD, E, and

the rectangle BG is contained by AB, F, because AG is equal to F ; and

the rectangle DH, by CD, E, because CH is equal to E ; therefore the pa- .

rallelogram BG is equal to the parallelogram DH, and they are equiangu-

lar : but the sides about the equal angles of equal parallelograms are reci-

procally proportional (14. 6.) : wherefore AB : CD : : CH : AG ; bul CH
=E, and AG=F; therefore AB : CD : : E : F.

PROP. XVH. THEOR.

Ifthree straight lines be proportionals, the rectangle contained by the extremes is

equal to the square of the mean : And if the rectangle contained by the ex-

tremes be equal to the square of the mean, the three straight lines arepropor-

tionals.

Let the three straight lines. A, B, C be proportionals, viz. as A to B, so

B to C ; the rectangle contained by A, C is equal to the square of B.

Take D equal to B : and because as A to B, so B to C, and that B is

equal to D ; A is (7. 5.) to B, as D to C : but if four straight lines be pro-

portionals, the rectangle contained by the extremes is equal to that which
is contained by the means (16. 6.) ; therefore the

rectangle A.C = the rectangle B,D ; but the rect- ^
angle B.D is equal to the square of B, because B= ^
D ; therefore the rectangle A.C is equal to the r;

~

square of B.
—

^

And if the rectangle contained by A, C be equal to the square of B ; A :

B : : B : C.

The same construction being made, because the rectangle contained by
A, C is equal to the square of B, and the square of B is equal to the rect-

angle contained by B, D, because B is equal to D ; therefore the rectangle

contained by A, C is equal to that contained by B, D ; but if the rectangle

contained by the extremes be equal to that contained by the means, the

four straight lines are proportionals (16. 6.) : therefore A : 3 : J D : C, but

B=D ; wherefore A : B : : B : C.

PROP. XVIIL PROB.

Upon a given straight line to describe a rectilinealfgure similar, and similarly

situated to a given rectilineal figure.

Let AB be the given straight line, and CDEF the given rectihneal figure

of four sides ; it is required upon the given straight line AB to describe a
rectilineal figure similar, and similarly situated to CDEF.

Join DF, and at the points A, B in the straight line AB, make (Prop. 23.
1.) the angle BAG equal to the angle atC, and the angle ABG equal to
the angle CDF ; therefore the remaining angle CFD is equal to the re-
maming angle AGB (4. Cor. 32. 1.) : wherefore the triangle FCD is equi-
angular to the triangle GAB : Again, at the points G, B in the straight

line GB make (Prop. 23. 1.) the angle BGH equal to the angle DFE, and
he angle GBH equal to FDE ; therefore the remaining angle FED is
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equal to the remaining angle GHB, and the triangle FDE equiangular to

the triangle GBH : then, because the angle AGB is equal to tho angle

CFD BOH to DFE the whole angle AGH is equal to the whole CFE

:

I. r

for the same reason, the angle ABH is equal to the angle CDE ; aUo the

angle at A is equal to the angle at C, and tlie angle GHB to FED ; 'Ihero-

fure the rectilineal figure ABHG is equiangtilar to CDEF : but likewise

these figures have their sides about the equu angles proportionals : for the

triangles GAB, FCD being equiangular,

BA : AG : : DC : CF (4. 6.) ; (or the same reason,

AG : GB : : OF : FD; and because of the equian-

gular triangles BGH, DFE, GB : GH : : FD : F£ ; therefore.

ex cquali (22. 5.) AG : GH : : CF : FE.
In the same manner, it may be proved, that

AB : BH : : CD : DE. Abo (4. 6.).

GH : HB . : FE : ED. Wherefore, because the rectai-

neal figtirea ABHG, CDEF are equiangular, and have tliuir sides about

the equal angles proportionals, they are siroiUr to one another (dof. 1 . 6.).

Next, Let it be required to describe upon a given straight line AB, a

rectilineal figure similar, and similarly situated to the rectilineal figure

CDKEF.
Join DE, afidupon the given straight line AB describe the rectilineal

figure ABHG Kimilar, and similarly situated to the quadrilateral figure

CDEF, by ilie former case ; and at the points B, H in tho str&iijLi line

BII, make the angle HBL equal to the angle EDK.and the angle BIIL
equal to the angle DEK ; therefore the remaining angle at K is equal to

the rcmainipg luiglo at L; and because the figures ABHG, CDEF are

similar, the angle GHB is equal to the angle FED, and BIIL is equal to

DEK ; wherefore the whole angle GHL is equal to the whole angle FEK

;

for the same reason the angle ABL is equal to the angle CDK : therefore

the five-sided figures AGHLB, CFEKD are e<{uiangular ; and because

the figures AGHB. CFED are similar, GH is to IIB as FE to ED ; and

as HB to HL,80 is ED to EK (4. 6.) ; therefore, ex ffi]uali (22. 5 ), GH
is to HL, as FE to EK : for the same reason, .\H is to BL, as CD to DK -

and BL is to LH, as (4. 6.) DK to KE, because the triangles BLH. DK K
are equiangular : therefore, because the five-eided figures ACillLIi

CFEKD are equiangular, and have their sides about the equal angles pro-

portionals, they are similar to one another ; and in tlie same manner a rec-
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tilineal figure of six, or more, sides may be described upon a ^ven straisfht

line similar to one given, and so on.
I

PROP. XIX. THEOR.

tStmilar triangles are to one another in the duplicate ratio of tlie homologous

sides.

Let ABC, DEF be simi-

lar triangles, having the an-

gle B equal to the angle E,

and let AB be to BC, as

DE to EF, so that the side

BC is homologous to EF
(def. 13. 5.) : the triangle

ABC has to the triangle

DEF, the duplicate ratio

of that which BC has to

EF.
Take BG a third proportional to BC and EF (11. 6.), or such that

BC : EF : : EF : BG, and join GA. Then, because

AB : BC : : DE : EF, alternately (16. 5.),

AB : DE : : BC : EF ; but

BC : EF : : EF : BG ; therefore (11. 5.)

AB : DE :: EF : BG ; wherefore the sides of the triangles

ABG, DEF, which are about the equal angles, are reciprocally propor-

tional ; but triangles, which have the sides about two equal angles recipro-

cally proportional, are equal to '

one another (15.6.) : therefore A
the triangle ABG is equal to

the triangle DEF; and because •/ \ -wv
that BC is to EF, as EF to // \ 1>
BG ; and that if three straight

lines be proportionals, the first

has to the third the duplicate

ratio of that which it has to the

second ; BC therefore has to B Gr C "E F
BG the duplicate ratio of that which BC has to EF. But as BC to BG
8o is (1. 6.) the triangle ABC to the triangle ABG : therefore the triangle

ABC has to the triangle ABG the duplicate ratio of that which BC has to

EF : and the triangle ABG is equal to the triangle DEF ; wherefore also

the triangle ABC has to the triangle DEF the duplicate ratio of that which
BC has to EF.

Cor. From this, it is manifest, that if three straight lines be propor-
tionals, as the first is to the third, so is any triangle upon the first to a
ttimilar, and similarly described triangle upon the second.
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PROP. XX. TIIEOR.

Simdarpolygons may be divided into tJke tame ammbtr ofsimilar triangles^ kam»
ing the same ratio to one another thai tAsptljfgmu have ; ami the polygtms
have to one another the duplicate ratio of that whteh their homologous sidoo

have.

Let ABODE, FGHKL, be similar polvgons, and let AB be the homo*
logoua side to FG : the polygons ABODE, FGHKL, may be dirided into

the same number of similar triangles, whereof each has to each the same
rauo which the polygons have ; and the polygon ABODE has to the poly>

gon P'GHKL a ratio duplicate of that which the aide AB has to the side

FG.
Join BE, EC, GL, LH : snd because the polygon ABODE is similar

to the polygon FGHKL, the angle BAE is equal to the angle GFL (def.

1. 6.), and BA : AE : : GF : FL (def. 1. 6.) : wherefore, because the tri

angles ABE, FGL have an angle in one equal to an angle in the other

and their sides about these equal angles proportionals, the triangle ABE is

equiangular (6. 6.), and therefore similar, to the triangle FGL (4. 6.):

wherefore the angle ABE is equal to the angle FGL : and, because the
polygons are similar, the whole angle ABC b equal fdef. 1 . 6.) to the whole
angle FGH ; therefore the remaining angle EBO u equal to the remain-
ing angle LGH : now bocaoM the tnanglea ABE, FGL are similar,

EB : BA : : LG : GF; and also because the

polygons are similar, AB : BC : : FG : GH (def. 1.6.); therefore, ex
asquali (22. 5.) EB : BC : : LG : GH, that is, the sides about the eonal
angles EDO, LGH are proportionals ; therefore (6. 6.) the triangle EBC

is equiangular to the triangle LGH, and similar to it (4. 6.). For the
same reason, the triangle EOD is likewise similar to the triangle LHK ;

therefore the similar polygons ABODE, FGHKL are dirided info the same
number of similar triangles.

Also these triangles hare, each to each, the Siime ratio which the poly-
gons hare to one another, the antecedenU being ABE, EBO, EOD, and
the consequents FGL, LGH, LHK : and the polygon ABODE has lo iho
polygon FGHKL the duplicate ratio of that which the side AH has to the
homologous side FG.

Because the triangle ABE is similar to the triangle FGL, AllE has to
FGL the duplicate ratio (19. 6.) of that which the side BK has to the side

18
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GL • for the same reason, the triangle BEG has to GLH the duphcate

ratio of that which BE has to GL : therefore, as the triangle ABE to the

triangle FGL, so (11. 5.) is the triangle BEG to the triangle GLH. Again,

because the triangle EBC is similar to the triangle LGH, EBC has to

LGH the duplicate ratio of that which the side EC has to the side LIl

;

for the same reason, the triangle EGD has to the triangle LHK, the du-

plicate ratio of that which EC has to LH : therefore, as the triangle EBC
to the triangle LGH, so is (IL 5.) the triangle ECD to the triangle LHK :

but it has been proved, that the triangle EBC is likewise to the triangle

LGH, as the triangle ABE to the triangle FGL. Therefore, as the trian-

gle ABE is to the triangle FGL, so is the triangle EBC to the triangle

LGH, and the triangle ECD to the triangle LHK : and therefore, as one
of the antecedents to one of the consequents, so are all the antecedents to

all the consequents (12. 5.). Wherefore, as the triangle ABE to the tri-

angle FGL, so is the polygon ABCDE to the polygon FGHKL : but the
triangle ABE has to the triangle FGL, the duplicate ratio of that which
the side AB has to the homologous side FG. Therefore also the polygon
ABCDE has to the polygon FGHKL the duplicate ratio of that which
AB has to the homologous side FG.

CoR. 1. In like manner it may be proved, that similar figures of four
sides, or of any number of sides, are one to another in the duplicate ratio of
their homologous sides, and the same has already been proved of triangles :

therefore, universally, similar rectilineal figures are to one another in the
duplicate ratio of their homologous sides.

CoR. 2. And if to AB, FG, two of the homologous sides, a third pro-
portional M be taken, AB has (def 11. 5.) to M the duplicate ratio of that
which AB has to FG : but the four-sided figure, or polygon, upon AB has
to th3 four-sided figure, or polygon, upon FG likewise the duplicate ratio
of that which AB has to FG : therefore, as AB is to M, so is the figure
upon AB to the figure upon FG, which was also proved in triangles (Cor.
19. 6.). Therefore, universally, it is manifest, that if three straight lines
be proportionals, as the first to the third, so is any rectilineal figure upon
the first, to a similar, and similarly described rectilineal figure upon the se-
cond.

CoR. 3. Because all squares are similar figures, the ratio of any two
squares to one another is the same with the duplicate ratio of their sides:
and hence, also, any two similar rectilineal figures are to one another as the
squares of their homologous sides.
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SCHOLIUM.

ir two polygons are compoeo<l of the same number of triangles similar,

hud similarly situated, those two polygons will be similar.

For the similarity of the two triangles will give the ansles EABssLFG
ABE=FGL,£BC==LGH: hence, ABC^FGH.IikewiM BCD=GHK
&c. Moreover, we shall hare, EA : LF : : AB : FG : : EB : LG : : BC
: GH, die; hence the two polygons have their angles equal and their aide*

proportional ; consequently they are similar.

PROP. XXI THEOR.

RectUuualjigurti wkick art similar U tkt sams rt<tiUm0aiJigim, art alto

tiatHar ta oat anaU^rr.

Let each of the rectilineal fignree A. B be simikr to the rectilineal figure

C : 'i'he figure A is similar to the figure B.

Because A is similar to C, they are equiangular, and also hare their

sides about the eqtial angles proportionals (def. 1 . 6.). Again, because B
is similar to C, they are equiangular, and have their sides about the equal

angles proportiomtU (def. 1.6.): therefore the figures A, B, are eacho(

them equiai^gttlar to C, and have the aides about the equal ansyles of each
of them, and of C, proportionals. Wherefore the rectilineal figures A uA
B are equiangular (1. Ax. 1.), and have their sides about the equal anglee
profxtrtionals (11.3). Therefore A is similar (^ef. 1 . 6.) to B.

PROP. XXII THEOR.

Iffour straight lints he nroportionals, the similar rtetilineal figures sxmilarty
described upon tAem tkattalst beproportionals ; and ifthe stmOar rectilineal

figures similarly described uponfcmr straight lines be proportionals, those
straight lines shall be proportionals.

' Let the four straight lines, AB, CD. EF, GH be proportionals, liz. AB
to CD, as £F lo GH, and upon AB, CU let Uie similar rectilineal figures
KAB, LCD be similarly described ; and upon EF, GH the similar recti,
lineal figures MF, NH, in like manner: the rectilineal figure KAB is m
LCD, asMFtoNH.
To AB, CD take a third proportional (11.6.) X ; and to EF, GH,«

third proportional O ; and because
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AB : CD : : EF : GH, and

CD : X : : GH : (1 1. 5.) O, ex aequali (22. 5.)

AB : X : : EF : O. But

AB : X (2. Cor. 20. 6.) : : KAB : LCD ; and

EF : O : : (2. Cor. 20. 6.) MF : NH ; therefore

KAB : LCD (2. Cor. 20. 6.) : : MF : NH.
And if the figure KAB be to the figure LCD, as the figure MF to the

figure NH, AB is to CD, as EF to GH.
Make (12. 6.) as AB to CD, so EF to PR, and upon PR describe (18.

6.) the rectilineal figure SR similar, and similarly situated to either of the

E T' G H O P R
figures MF, NH : then, because that as AB to CD, so is EF to PR, and
upon AB, CD are described the similar and similarly situated rectilineals

KAB, LCD, and upon EF, PR, in like manner, the similar rectilineals

MF, SR ; KAB is to LCD, as MF to SR ; but by the hypothesis, KAB
is to LCD, as MF to NH ; and therefore the rectilineal MF having the

same ratio to each of the two NH, SR, these two are equal (9. 5.) to one
another ; they are also similar, and similarly situated ; therefore GH is

equal to PR : and because as AB to CD, so is EF to PR, and because PR
is equal to GH, AB is to CD, as EF to GH.

PROP. XXIH. THEOR.

Equiangular parallelograms have to one another the ratio which is compounded

of the ratios of their sides.

Let AC, CF be equiangular parallelograms having the angle BCD
equal to the angle ECG ; the ratio of the parallelogram AC to the paral-

lelogram CF, is the same with the ratio which is compounded of the ratios

of their sides.

Let BC, CG be placed in a straight line ; therefore DC and CE are also

in a straight line (14. 1.); complete the parallelogram DG ; and, taking

any straight line K, make (12. 6.) as BC to CG, so K to L ; and as DC
to CE, so make (12. 6.) L to M : therefore the ratios of K to L, and L to

M, are the same with the ratios of the sides, viz. of BC to CG, and of DC
to CE. But the ratio of K to M, is that which is said to be compounded
(def. 10. 5.) of the ratios of K to L, and L to M ; wherefore also K has to
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M the ratio cofflpomided of the ntios of

the sides of the pandlelograms. Now,
because as BC to CO, so is the parallel-

ogram AC to the parallelogram CH (1.

6.) ; and as BC to CG. so b K to L

;

therefore K is (11. d.) to L, as the paral-

lelogram AC to the parallelogram CH :

again, because as DC to CE, so is the
parallelogram CH to the parallelogram

CF : and as DC to CE, so is L to M

;

diereforeLis(ll. A.) to Bi, as the paral-

lelogram CH to the parallelogram CF

:

therefore, aince it has beea proved, that

as K tu L, so is the paralleloffrara AC
to the parallelogram CH ; and as L to M, eo the parallelogram CH to the
parallelogram CF ; ex aqaali (23. d.), K is to M, as the parallelogrmm
AC to the parallelognm CF ; but K has to M Uie ratio which is com-
Euuded of the ratios of the sides ; therefore also the parallelogram AO

s to the parallelogram CF the ratio which is compounded of Uie ratioe

of the aides.

Coa. Hence, my two reetangUs er« to tack tiitr m» tk§ fnimeU tf
their bases multiplted by their aliUvdes.

SCHOLIUM.

Hence the product of the base bjr the althade mar be assumed as the
neasure of a rectangle, prorided we understand br Uiis product the pro-

duct of two numbers, one of which is the number of linear uniu contained
in the base, the other the number of linear units contained in the altitude.

Still this measure is not absolute but relatire : it supposes that the area
of any other rectangle m computed in a similar manner, by measuring ita

sides with the same linear imit ; a second product is thus obtained, and
the ratio of the two products is the same as that of the two rectanglea,

agreeably to the proposition just demonstrated.

For example, if the base of the rectangle A contained three miits, and its

altitude ten, that rectangle will be represented by the number 3 x 1 0, or

30, a number which aignifies nothing while thus isolated ; but if there is a
aecond rectangle B, the base of which contains twelre units, and the alti-

tude seven, this rectangle would be represented by the number 12 X 7=84 ;

and we shall hence be entitled to conclude that the two rectangles are to

each other as 30 is to 84 ; and therefore, if the rectangle A were to be ss-

sumed as the unit of measurement in surfaces, the recungle B would then

hare ^ for its absolute measure ; or, which amounts to the same thing, it

would be equal to f^ of a superficial unit.

It is more common and more simple to assume the squares as the unit of
surface ; and to select that square whose side is the unit of length. In

this case, tbe measurement which we hare regarded merely as relative,

l>ecomes absolute : the number 30, for instance, by which the rectangle A
wait measured, now represents 30 superficial unit^t, or 30 of those squares,

which have each of their sides equal to unity.
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Cor. 1. Hence, the area of anyparaUdogram is equal to the product of
its ba&e hy its altitude.

Cor. 2. It likewise follows, that the area of any triangle is equal to the

product of its base by halfits altitude.

PROP. XXIV. THEOR.

The parallelograms about the diameter of any parallelogram, are similar to th*

whole, and to one another.

Let ABCD be a parallelogram, of which the diameter is AC ; and EG,
HK the parallelograms about the diameter: the parallelograms EG, HK
are similar, both to the whole parallelogram ABCD, and to one another.

Because DC, GF are parallels, the angle ADC is equal (29. 1.) to the

angle AGF : for the same reason, because BC, EF are parallels, the an-

gle ABC is equal to the angle AEF : and each of the angles BCD, EFG
is equal to the opposite angle DAB (34. 1.), and therefore are equal to one
another, wherefore the parallelograms ABCD, AEFG are equiangular
And because the angle ABC is equal to the angle AEF, and the angle
BAC common to the two triangles BAG,
EAF, they are equiangular to one another

;

therefore (4. 6.) as AB to BC, so is AE to

EF ; and because the opposite sides of paral-

lelograms are equal to one another (34. 1.),

AB is (7. 5.) to AD, as AE to AG ; and DC
to CB, as GF to FE ; and also CD to DA,
as FG to GA : therefore the sides of the pa-
rallelograms ABCD, AEFG about the equal
angles are proportionals ; and they are
therefore similar to one another (def. 1.6.); for the same reason, the pa-
rallelogram ABCD is similar to the parallelogram FHCK. Wherefore
each of the parallelograms, GE, KH is similar to DB : but rectilinea.
figures which are similar to the same rectilineal figure, are also similar to
one another (21. 6.) ; therefore the parallelogram GE is similar to KH.

PROP. XXV. PROB.

To describe a rectilinealfigure which shall be similar to one, and equal to

another given rectilineal Hgure.

Let A.BC be the given rectilineal figure, to which the figure to be de-
scribed is required to be similar, and I) that to which it must be equal. It

is required to describe a rectilineal figure similar to ABC, and equal to D.
Upon the straight line BC describe (Cor. Prop. 45. 1.) the parallelogram

BE equal to the figure ABC ; also upon CE describe (Cor. Prop. 45. 1.)
the parallelogram CM equal to D^ and having the angle FCE equal to the
angle CBL : therefore BC and CF are in a straight line (29.1.orl4.1.1, as
also LE and EM

; between BC and CF rind (13. 6.) a mean proportional
GH, and upon GH describe (18. 6.) the rectilineal figure KGH similar,
and similarly situated, to the figure ABC. And because BC is to GH as
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GH to CF, and if three straight lines be proportionals, as the first is to the

third, so is (2. Cor. 20. 6.) the figure upon the first to the similar and simi

larly described figure upon the second ; therefore as BC to CF, so is the

Bfcavi .\BC to the figure KGH : but as BC to CF, so is (1. 6.) the pan]-

lelogram BE to the parallelogram EF : therefore as the figure ABC s to

the figure KGH, so is the parallelogram BE to the pwallelogram EF (11.

5.) : but the rectilineal figure A BC is equal to the parallelogram BE ; there-

fore the rectilineal figure KGH is equal (14. 5.) to the parallelogram EF :

but EF is equal to the figure D ; wherefore als^ KGH m equal to D ; and
it is siinilar to ABC. Therefore the rectilineal figure KGH has been d^
scribed similar to the figure ABC, and equal to D.

PROP. XXVI. THEOR.

If two similarparaUelograms kav9 a tommem angU, and he rmihtrly situated^

tMey art about tk$ samt aiameter.

Let the parallelograms ABCD, AEFG be similar and similarly situated,

and havu the angle DAB common; ABCD and AEFG are about the

same diameter.

For, if not, let, if possible, the parallelogram

BD hare iu diameter AHC in a diflbrent

straight line from AF, the diameter of the pa-

ralleluifr;im EG, and let GF'meet AHC in H :

and tliroiigh H draw HK parallel to AD or

BC ; therefore tlie parallelograms ABCD,
AKHG being about the same diametec, are

similar to one another (24. 6.) : wherefore, as
DA to AB, so is (def. 1. 6.) GA to AK ; but
because ABCD and AEFG are similar paral-

lelograms, as DA is to AB, so is GA to .\E ; therefore (11. 5 ) as GA to

AE,so GA to AK ; wherefore G.\ has the same ratio to each of the straight

lines AE, AK ; and consequently AK is equal (9. 5.) to AE, the less to

the greater, which is impossible; therefore ABCD and AKHG are nol

about the same diameter; wherefore ABCD and AEFG must be about
the same diameter.
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PROP. XXVII. THEOR.

Of all the rectangles contained by the segments ofa given straight line, the

greatest is the square which is described on half the line.

Let AB be a given straight line, which is bisected in C ; and let D be
any point in it, the square on AC is greater

than the rectangle AD, DB. A. C D B
For, since the straight line AB is divided into two equal parts in C, and

into two unequal parts in D, the rectangle contained by AD and DB, to-

gether with the square of CD, is equal to the square of AC (5. 2.). The
square of AC is therefore greater than the rectangle AD.DB.

PROP. XXVIII. PROB.

To divide a given straight line, so that the rectangle contained by its segments

may be equal to a given space ; but that space must not be greater than tfie

square ofhalfthe given line.

Let AB be the given straight line, and let the square upon the given

straight line C be the space to vvhich the rectangle contained by the seg-

ments of AB must be equal, and this square, by the determination, is not

greater than that upon half the straight line AB..

Bisect AB in D, and if the square upon AD be equal to the square upon
C, the thing required is done : But if it be not equal to it, AD must be
greater than C, according to the deter-

mination : Draw DE at right angles to

AB, and make it equal to C : produce
ED to F, so that EF be equal to AD
or DB, and from the centre E, at the

distance EF, describe a circle meeting —_____^
AB in G. Join EG ; and because AB -A. \~^^^

j
^^^G- JR

is divided equally in D, and unequally i

—

in G, AG.GB+DG2=(5. 2.) DB2= *
EG2. But (47. 1.) ED2+DG2=EG2; therefore, AG.GB+DG2=ED2
+DG2, and taking away DG2, AG.GB=ED2. Now ED=C, therefore
the rectangle AG.GB is equal to the square of C : and the given line AB
is divided in G, so that the rectangle contained by the segments AG, GB
is equal to the square upon the given straight line C.

PROP. XXIX. PROB.

To produce a given straight line, so that the rectangle contained by the segments
between the extremities of the given line, and the points to which it is pro-
duced, may be equal to a given space.

Let AB be the given straight line, and let the square upon the given
straight line C be the space to which the rectangle under the segments of
AB produced, must be equal.
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Bisect AB in D, and draw DE at right angles lo it, so that BE be equal

to C ; and having joined DE, from the centre D at the distance DE de-

scribe a circle meeting AB produced in G.

And becaiue AB is bisected in D, and

produced to G» (6. 3.) AG.GB+DB«a
DG2=DE».

But (47. 1.) DE»=DB'+BE'. thero-

lisre AGjGB -|- DB« s DB« + BE«, and
AG.GB=»BE». Now, BE « C ; where-
fore the straight line AB is produced to

G, so that the rectangle contained by the

segments AG, GB (rf* the line produced,

is equal to the sqaaore of C.

(29. 6.).

DC and

PROP. XXX. PROB.

To cut a given straight lint m txtrtmt and m»an ratio.

Let AB be the girea straight line ; it is required to«ttl it in extreme and

mean ratio.

Upon AB describe (Prop. 46. l.)the square BC, and produce CA to D,

so that the rectangle CD.DA may be equal to the square CB
'~~

Take AE equal to AD, and complete the rectangle DP under

A£, or under DC and DA. Then, because the

rectangle CD.DA is eotud to the square CB, the

rectangle DP is eauai to CB. Take away the

common part CE from each, and the remainder

FB is equal to the remainder DE. But PB is

the rectangle contained by PE and EB, that is,

by AB and BE ; and DE b the square upon AE

;

therefore AE is a mean proportional between
AB and BE (17. 6), or AB is to AE as AE to EB.
But AB is greater than AE ; wherefore AE is

greater than EB (14. 5.): Therefore the straight

line AB is cut in extreme and mean ratio in £ (def.

3. 6.).

Otherwise.

c

% B

Let AB be the giiren straight line ; it is required to cut it in extreme
and mean ratio.

Divide AB in the point C, so that the rectangle contained by AB, BC
be equal to the square of AC (11. 2.): Then be-

cause the rectangle AB.BC is equal to the square 7 n 3
of AC, as BA to AC, so is AC to CB (17. 6.)

;

Therefore AB is cut in extreme and mean ratio in C (def. 3. G.).

19
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PROP. XXXL THEOR.

In right angled triangles, the rectilineal figure described upon the side oppo-

site to the right angle, is equal to the similar, and similarly described

figures upon the sides containing the right angle.

Let ABC be a right angled triangle, having the right angle BAG : The
rectilineal figure described upon BC is equal to the similar, and similarly

described figures upon BA, AC.
Draw the perpendicular AD ; therefore, because in the right angled tri-

angle ABC, AD is drawn from the right angle at A perpendicular to the
base BC, the triangles ABD, ADC are similar to the whole triangle ABC,
and to one another (8. 6.), and because the triangle ABC is similar lo

ADB, as CB to BA, so is BA to BD (4. 6.) ; and because these three
straight lines are proportionals, as the first to the third, so is the figure upon
the first to the similar, and similarly described figure upon the second (2.

Cor. 20. 6.) : Therefore, as CB to BD,
so is the figure upon CB to the similar

and similarly described figure upon
BA : and inversely (B. 5.), as DB to

BC, so is the figure upon BA to that

upon BC ; for the same reason as DC
to CB, so is the figure upon CA to that

upon CB. Wherefore, as BD and DC
together to BC, so are the figures upon
BA and on AC, together, to the figure

upon BC (24. 5.) ; therefore the figures on BA, and on AC, are together
equal to that on BC ; and they are similar figures.

PROP. XXXIL THEOR.

If two triangles, v^hich have two sides of the one proportional to two sides of
the other, be joined at one angle, so as to have their homologous sides pa-
rallel to one another ; their remaining sides shall be in a straight line.

Let ABC, DCE be two triangles which have two sides BA, AC propor-
tional to the two CD, DE, viz. BA to AC, as CD to DE ; and let AB be
parallel to DC, and AC to DE ; BC and CE are in a straight line.

Because AB is parallel to DC, and the straight line AC meets them, the
alternate angles BAC, ACD are equal (29 1.) ; for the same reason, the
angle CDE is equal to the angle
ACD ; wherefore also BAC is equal
o CDE : And because the triangles

ABC, DCE have one angle at A
equal to one at D, and the sides about
these angles proportionals, viz. BA to

AC, as CD to DE, the triangle ABC
is equiangular (6. 6.) to DCE :

Therefore the angle ABC is equal to
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the angle DCE : And the angle BAG was proved to be equal to AC]^ :

Therefore the whole angle ACE is equal to the two angles AUG, BAG ;

add the common angle ACB, then the angles AGE, AGB are equal to the

angles ABC, BAG, AGB . But ABG, BAG, AGB are equal to two right

angles (32. 1.) ; therefore also the angles AGE, AGB are equal to two
right angles : And since at the point C, in the straight line AG, the two
straight lines BG. GE, which are on the opposite sides of it, make tlio 3d*

jacent angles AGE, AGB equal to two right angles ; therefore (M. 1.) BC
and GE are in a straight line.

PROP. XXXIIl. THEOR.

In tqfutl eircUs^ <n*gl**t wketMer at the eentrts or eircumfertnctSf kaot tkt Mmft
ratio which tht arcs, on which they stand, havo to oma fmotktr : SoaUaiaift
the sectors.

Let ABG, DEF be eqtial circles ; and at their centres the angles BGC,
EHF, and the angles B.VC, EDK at their cirrumfvronces ; as the src BC
to the arc EF, so is tlie angle BGG to the angle EHF, and the angle BAG
to the angle EDF : and also the sector BGG to the sector EHF.
Take any number of arcs GK, KL, each equal to BG, and atnr number

-whateTer FM, MN each equal to EF ; and join GK. GL, HM, IIN. B^
cause the arcs BC. CK. KL are all equal, the angles BGG, GGK, KGL
are also all equal (27. 3.) : Therefore, what multiple soever the arc BL ia

of the arc BG, the same multiple is the angle B(t L of the angle BGG : For
the same reason, whatever multiple the arc EN is of the arc HF the same
multiple is the angle EHN of the angle EHF. But if the arc BL, be m^ual

to the arc EN, the angle BGL is also equal (27. 3.) to the angle EH.N ;

or if the arc BI^ be greater than EN. likewise the angle BGL is greater

than EHN : and if less, less : There being thrn four magnitudfui, the two
arcs, BG, EF, and the two angles BGG, EHF. and of the arc BG, and of
the angle BGG, have been taken any equimultiples whatever, viz. the arc

BL, and the angle BGL ; and of the arc EF, and of the angle EHF, any
equimultiples whatever, viz. the arc EN, and the ani;le EHN: And it

has been proved, that if the arc BL be greater than EN, the angle BOL
is greater than EHN ; and if equal, equal ; and if less, less ; As iherefure,

the arc BG to the are EF, so (def. 5. 3.) is the angle BGG to the angle
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EHF : But as the angle BGC is to the angle EHF, so is (IS 5.) the an-

gle BAG to the angle EDF, for each is double of each (20. 3.) : Therefore,

as the circumference BG is to EF, so is the angle BGC to the angle EHF,
and the angle BAG to the angle EDF.

Also, as the arc BG to EF, so is the sector BGC to the sector EHF.
Join BG, GK, and in the arcs BG, GK take any points X, O, and join BX,
XG, GO, OK : Then, because in the triangles GBG, GGK, the two sides

BG, GG are equal to the two CG, GK, and also contain equal angles ; the

base BG is equal (4. 1.) to the base GK, and the triangle GBG to the tri-

angle GGK : And because the arc BG is equal to the arc GK, the remain-
ing part of the whole circumference of the circle ABC is equal to the re-

maining part of the whc^ circumference of the same circle : Wherefore
the angle BXG is equal to the angle COK (27. 3.) ; and the segment
fiXC is therefore similar to the segment COK (def. 9. 3.) ; and they are

upon equal straight lines BG, GK : But similar segments of circles upon
equal straight lines are equal (34. 3.) to one another : Therefore the seg-
ment BXG is equal to the segment COK : And the triangle BGC is equal
to the triangle GGK ; therefore the whole, the sector BGC is equal to the

whole, the sector GGK : For the same reason, the sector KGL is equal to

each of the sectors BGC, GGK ; and in the same manner, the sectors

EHF, FHM, MHN, may be proved equal to one another : Therefore, what
multiple soever the arc BL is of the arc BG, the same multiple is the sec-
tor BGL of the sector BGC. For the same reason, whatever multiple the
arc EN is of EF, the same multiple is the sector EHN of the sector EHF

;

Now if the arc BL be equal to EN, the sector BGL is equal to the sector

EHN ; and if the arc BL be greater than EN, the sector BGL is greater
than the sector EHN ; and if less, less : Since, then, there are four mag-
nitudes, the two arcs BG, EF, and the two sectors BGC, EHF, and of the
arc BG, and sector BGC, the arc BL and the sector BGL are any equi-
multiples whatever ; and of the arc EF, and sector EHF, the arc EN and
sector EHN, are any equimultiples whatever ; and it has been proved, that

if the arc BL be greater than EN, the sector BGL is greaterthan the sec-
tor EHN ; if equal, equal; and if less, less ; therefore (def. 5. 5.) as the
arc BG is to the arc EF, so is the sector BGC to the sector EHF
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PROP. B. THEOR.

ijfCM angleofa trioMgh be Insected by a strmgkt Um$^wkiA UUwue cuts tkt

bmse; the fetangU amtamad by ikt sides oftke triamgU is eqttal te the

reetmtgUeemlmmd hff tiesegwtemis oftke baie^ tegttker with the square ef
the slraigkt time bise^mg the mttgte.

Let ABC be • triaagU, and leC iho angle BAG be bisected by the

Mnisfat line AD ; tbe rectangle BA.AC is equal to the rectangle BD.DC.
together with the square of AD.

Describe the circio (Prop^ 5. 4.) ACB about

the triangle, and prodoce AD to the circum-

ference in E. and join EC TImo. because

the angle B.\D is equal to tbe angle CAE,
and the angle ABD to the m^ (21. 3.)

AEC, for they are in the same Mgnaent ; the

triangles ABO, AEC aie equiaa«Uar to one
anoUier : Therefore BA : AD : : EA : (4. 6.)

AC, and consequently, BA.AC as (16. 6.)

AD.AEa>ED.DA(3. 2.) -(-DA*, fiat ED.
DA:=rDD.DC. therefore BAJIC a BD.DC
-fDA>.

PROP. C. THEOR.

Iffrom my angle ofa triemgle a sirmigkt time be drawn perpemdirular to tbe

base; tie rettangie eomlamed by the sides ef tAe trtoMgie it equal to tbe

reeta»gie contai»ed by tAe pefpendieulm-, mad tbe diameter of tkedrcie de-

aeribedmbayt the triemgie.

fjet ABC bo a triangle, and AD the perpendicular from the angle A to

the base BC ; the rectanrle BA.AC is equal to the rectangle conuined by
AD and the diameter of the circle described about the triangle.

Describe (Profx 5. 4.) the circle ACB
about the triangle, and (baw its diameter

AE, and join EC ; Because the right

angle BDA is equal to the angle ECA in

a semicircle, and the angle ABD to the

angle AEC, in the same segment (21.

8.); the triangles ABD, AEC are equi>

angular : Therefore, as (4. 6.) BA to

AD, so is EA to AC : and consequently

the rectangle BA.AC is equal (16. 6.) to

the rectangle EA.AD.
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PROP. D. THEOR.

The rectangle contained by the diagonals of a quadrilateral inscribed m a

circle, is equal to both the rectangles, co7itained by its opposite sides.

Let ABCD be any quadrilateral inscribed in a circle, and let AC, BD be

drawn ; the rectangle AC.BD is equal to the two rectangles AB.CD, and

AD.BC.
Make the angle ABE equal to the angle DBC ; add to each of these

the common angle EBD, then the angle ABD is equal to the angle EBC :

Anu the angle BDA is equal to (21. 3.) the angle BCE, because they are

in the same segment ; therefore the triangle

ABD is equiangular to the triangle BCE.
Wherefore (4. 6.), BC : CE : : BD : DA,
and consequently (16. 6.) BC.DA=BD.CE.
Again, because the angle ABE is equal to

the angle DBC, and the angle (21. 3.) BAE
to the angle BDC, the triangle ABE is equi-

angular to the triangle BCD ; therefore BA
: AE :: BD : DC, and BA.DC=BD.AE:
But it was shewn that BC.DA=BD.CE

;

wherefore BC.DA + BA.DC = BD.CE+
BD.AE=BD.AC(1.2.), That is, the rect-

angle contained by BD and AC, is equal to the rectangles contained by
AB, CD, and AD, BC.

PROP. E. THEOR.

Ifan arc of a circle be bisected, andfrom the extremities of the arc, and from
the point of bisection, straight lines be drawn to any point in the circum-

ference, the sum of the two lines drawnfrom the extremities of the arc will

have to the line drawn from the point of bisection, the same ratio which the

straight line subtending the arc has to the straight line subtending halfthe

arc.

Let ABD be a circle, of which AB is an arc bisected in C, and from A,

C, and B to D, any point whatever in the circumference, let AD, CD, BD
be drawn ; the sum of the two lines AD
and DB has to DC the same ratio that

BA has to AC.
For since ACBD is a quadrilateral in-

scribed in a circle, of which the diagonals
are AB and CD, AD.CB+ DB.AC (D
6 ) = AB.CD : but AD.CB+ DB.AC =
AD.AC -f- DB.AC, because CB = AC.
Therefore AD.AC+ DB.AC, that is (1.

2.),(AD+pB) AC=AB.CD. And be-
cause the sides of equal rectangles are re-

ciprocally proportional (14. 6.), AD+DB
. DC :

• AB : AC.
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PROP. F. THEOR

Iftwopoints be taien in tht diameter ofa circle, such tJutl the rectangle contmned

by the segment* intercepted bettceen them and tk*centre ofthe rireU be equai to

the square ofthe radius: and iffrom thesepoints two straight lines be drawn
to any point whmt»omer in the cireumferenee of the circle, the ratio of these

lines will be th§tamt «t(A the ratio of the segments intercepted ietween the

two first mentioned poisUs and tMe dratmferenee of the circle.

L«t ABC be & circle, of which the centre is D, and in DA prodoced, let

the poinm E and F be such that the recungle ED, DP is equal to the

square of AD ; from E and F to any point B in the circumference, let EB,
KB be drawn ; FB ; BE : : FA ; AE.

Join BD, and because the rectangle FD, DE is equal to the square of

AD, that is, of DB, FD : DB : : DB : DE (17. 6.).

The two triangles, FDB, BDE have therefore the sides proportional

that are about the common angle D ; therefore they are equiangular {6.

6.), the angle DEB being equal lo the angle DBF. and DBE to DFB.

Now, since the aides about these equal angles are also proportional (4. 6.),

FB : BD : : BE : ED, and alternately (16. 6.), FB : BE : : BD : ED, or

FB ; BE : : AD : DE. But because FD : DA : : DA : DE, by division

(17. 5.), FA : DA : : AE : ED, and alternately (11. 5.). FA : A E : : DA
: ED. Now it has been shewn that FB : BE : : AD : DE. therefore FB
• BE : : FA : AE.

Cor. If AB be drawn, because FB : BE : : FA : AE, the angle FBE
IS bisected (3. 6.) by AB. Also, since FD : DC : : DC : DE, by compo-
sition (18. 5.), PC : DC : : CE : ED, and since it has been shewn thai

PA : AD (DC) : : AE : ED, therefore, ex «quo, FA : AE : : PC : CE.
ButFB : BE :: FA : AE, therefore, FB : BE : : PC : CE(11.5 ),80 that

if FB be produced to G. and if BC be drawn, the angle EBG is bisected
by theUneBC(A.f..).
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PROP. G. THEOR.

Iffrom the extremity of the diameter ofa circle a straight line he dravm in the

circle, and ifeither within the circle orproduced without it, it meet a line per-

pendicular to the same diameter, the rectangle contained by the straight lint

drawn in the circle, and the segment of it, intercepted between the extremity

ofthe diameter and the perpendicular, is equal to the rectangle contained by

the diameter and the segment of it cut off by the perpendicular.

Let ABC be a circle, of which AC is a diameter, let DE be perpendicu-

lar to the diameter AC, and let AB meet DE in F ; the rectangle BA.AF
is equal to the rectangle CA.AD. Join BC, and because ABC is an an-

gle in a semicircle, it is a right angle (31, 3.): Now, the angle ADF i»

also a right angle (Hyp.) ; and the angle BAG is either the same with
DAF, or vertical to it ; therefore the triangles ABC, ADF are equiangular,

and BA : AC : : AD : AF (4, 6.) ; therefore also the rectangle BA.AF,
contained by the extremes, is equal to the rectangle ACAD contained by
the means (16. 6.).

PROP. H. THEOR.

Theperpendiculars drawnfrom the three angles ofany triangle to the opposite

sides intersect one another in the same point.

Let ABC be a triangle, BD and CE two perpendiculars intersecting one
another in F ; Let AF be joined, and produced if necessary, let it meet BC
in G, AG is perpendicular to BC.

.Join DE, and about the triangleAEF let a circle be described, AEF :

then, because AEF is a right angle, the circle described about the triangle

AEF will have AF for its diameter (31. 3.). In the same manner, the
circle described about the triangle ADF has AF for its diameter; there-

fore the points A, E, F and D, are in the circumference of the same circle.
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But becaose the angle £FB is equal

to the angle DEC (15.1.), and alao

Uie angle BEF to the angle CDF,
benw both right aaglea, dM iriMigVw

BEF, and CDF ara eqnuDKvkr, aad

therefore BF ; EF : : CF : FD (4. 6.),

or alternately (16.6.) BF^ FC : : EF
: FD. Since, then, the sidea about

the equal anglea BFC, EFD are pro-

portionaU, the triangles BFC, EFD
are alao equiangular (6. 6.) ; wharo-
ibre the angle FCB ia equal to the mi>

gle EDF. BtttEDFiaeqoaltoEAF.
becauae they are angles in the same
segment (21. 3.); therefore the angle

EAF is equal to the angle FCG : Now, the angles AFE. CFG are also

equal, becauae they are vertical angles ; therefore the remaining anglt-s

AEF, FGC are also equal (4. Cor. 32. 1.) : But AEF is a right angle,

therefore FGC ia a right angle, and AG ia perpendicular to BC.

Cor. The triangle ADE is similar to the triangle ABC. • For the two

triangles BAD, CAE baring the angles at D and £ right angles, and the

adgle at A common, are equiangular, and therefore BA : AD :: CA : AE,
and alternately BA : CA : : AD : AE ; therefore the two trianglea BAC,
DAE, have the angle at A common, and the aides about that angle pro-

portionals, therefore they are equiangular (6. 6.) and similar.

Hnoe tba recta^^as BA^E, CA.AD are equal.

PROP. K. THEOR.

Iffnm WKif angU of a triangU a perptndiadar ht itwm to tkt omosiU sidt

or boM : tkt rreimmgU amtavud by the sum and d^ertnet oftXt otkar two

sides, is oquai to the rtetangU eontmmod by tko nm and dtfferencs oftho

stgmeuts^ into vkick tks bass is dividsd by tMs perpendieular

Ijct ABC be a triangle, AD a perpendicular drawn from the angle A on

•te base BC, so that BD, DC are the segmenu of the base ; (AC+AB)
\C-AB)»(CD+DB) (CD-DB.)
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From A as a centre with the radius AC, the greater of the two sides,

descriDe the circle CFG : produce AB to meet the circumference in E and

F, and CB to meet it in G. Then because AF=AC, BF=AB-A-AC,
the sum of the sides; and since AE=AC, BE=AC—AB= the dilTe-

rence of the sides. Also, because AD drawn from the centre cuts GC at

right angles, it bisects it ; therefore, when the perpendicular falls within

the triangle, BG=DG—DB=DC—DB= the difference of the segments

of the base, and BC=BD+DC= the sum of the segments. But when
AD falls without the triangle, BG=DG+DB=CD+DB= the sum of

the segments of the base, and BC=:CD—DB=: the difference of the seg-

ments of the base. Now, in both cases, because B is the intersection of

the two lines FE, GC, drawn in the circle, FB.BE=CB.BG ; that is, as

has been shewn, (AC+AB) (AC-AB)=(CD+DB) (CD-DB)

PROBLEMS
RELATING TO THE SIXTH BOOK.

.V'

PROP. L. PROBLEM.

To construct a square that shall be equivalent to a given rectilinealfigure.

Let A be the given rectilineal figure ; it is required to describe a square

that shall be equivalent to A.

Describe (Prop. 45.1.) the

rectangular parallelogram

BCDE equivalent to the rec-

tilineal figure A ;
produce

one of the sides BE, of this

rectangle, and make EF=
ED; bisect BF in G, and
from the centre G, at the
distance GB, or GF, de-
scribe the semicircle BHF,
and produce DE to H.
HE^=BE X EF, (13. 6.) ; therefore the square described upon HE will

be equivalent to the rectilineal figure A.

SCHOLIUM.
This problem may be considered as relating to the second Book : Thus,

join GH, the rest of the construction being the same, as above ; because
the straight line BF is divided into two equal parts in the point G, and into
two unequal in the point E, the rectangle BE.EF, together with the square
of EG, is equal (5. 2.) to the square of GF : but GF is equal to GH ;
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'*dlei?fore the rrctangle BE, EP, together with the square of EG, is equal
to the itqnare of GH : But the squares of HE and EG, are equal (47. 1.)

lo the square of GH : Therefore also the recungie BE.EF, together with
the square of EG, is equal to the sqtiares of HE and EG. Take away
the square of EG, which is common to both, and the remaining rectangle

BE.EF is equal to the square of EH : But BD is the rectangle contained

by BE and EF, because EF is equal to ED ; therefore BD is equal to the

square of EH ; and BD is also equal to the rectilineal figure A ; therefore

the rectilineal figure A is equal to the square of EH : Wherefore a square
has been made equal to the giTen rectilineal figiure A, viz. the square de<
scribed upon EH.

Note. This opermtion is called tfumrimg the rectilinMl figure, or finding

the quadralurw of it.

PROP. M. PROS.

To construct a reetangU that tkatt &• e^itxtlent to a given square, and ths

difference of ickoso adjacent sides shall be equal to a given line.

Suppose C eqiuU to the giTea Mpnre, and
AB the diflerence of the sides.

Upon the given line AB as a diameter, de-

scribe a circle ; at the extremity of the diaro-

eter draw the tangent AD equal to the side

of the square C ; through the point D, and the

cenue O, draw the secant DF ; then will DE
and DF be the adjacent sides of the rectangle
required.

First, the difference of their sidM is equal
to the diameter EF or AB ; secondly, the rect-

angle DE.DF is equal to AD> (36. 3.) ; hence
that rectangle is equivalent to the given square C.

PROP. N. PROB.

To construct a rectangle equivalent to a given square^ and having ths sum
of its adjacent sides equal to a given lina.

I^t C be the given square, and AB equal to the sum of the sides of the
required rectangle

Upon AB as a diameter,

describe a semicircle ; draw
the line DE parallel to the

diameter, at a distance AD
from it, equal to the side of
the given square C ; from the

point E, where the parallel -^ F B
cuts the circumference, draw EF perpendicular to the diaAieter ; aF
and FB will be the sides of the rectangle required.
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For their sum is equal to AB ; and their rectangle AF.FB is equal to the

square EF, or to the square AD ; hence that rectangle is equivalent to the

given square C.

SCHOLIUM.

To render the problem possible, the distance AD must not exceed the

radius ; that is, the side of the square C must not exceed the half of the

line AB.

PROP. O. PROB.

To construct a square that shall be to a given square as a given line to a given
line.

Upon the indefinite straight line GH take GK=E, and KH=F ; de-

scribe on GH a semicircle, and draw the perpendicular KL. Through
the points G, H, draw the ngi

straight lines LM, LN, mak-
ing the former equal AB, the !F

side of the given square, and
through the point M, draw
MN parallel to GH, then will

LN be the side of the square

sought.

For, since MN is parallel , —
-n./- -vt

to GH, LM : LN : : LG :
-M N

LH ; consequently, LM» : LN" : : LG^ : LH" (22. 6.) ; but, since the trian-

gle LGH is right angled, we have LG" : LH" : : GK : KH ; hence LM" :

LN" : : GK : KH ; but, by construction GK=E, and KH=F, also LM
=AB ; therefore, the square described on AB is to that described on LN,
as the line E is to the line F.

D C

JL B

PROP. P. PROB.

To divide a triangle into two parts by a line from the vertex ofone ofits angles,

so that theparts may be to each other as a straight line M to another straight

line N.

Divide BC into parts BD, DC propor-
tional to M, N; draw the line AD, and
the triangle ABC will be divided as re-
quired.

For, since the triangles of the same
altitude are to each other as their bases,
we have ABD : ADC : : BD • DC • •

M • N.

SCHOLIUM.
A triangle may evidently be divided into any number of parts propor

tional to given lines, by dividing the base in the same proportion
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VKOF. Q. PROB.

To itvide aUvMgUmtotwparU by a line dramn paralUl to ontofitssidta,

so that thuofort* mmf M to each other as two straigkl lines M, N.

As M+N : N, bo make AB* to AD*
(Prob. 4.) ; Draw DE parallel to BC»
«nd the triangle is divided as required.

For the triangles ABC, ADE being

similar, ABC : ADE : : AB> : AD< ; but

M+N : N : : AB> : AD' ; therefore ABC
: ADE : : M-fN : N; consequeatlj

BDEC : ADE : : M : N.

PROP R. PROB.

To dmrido a trianglo into two ports, 6y a line dnwm fnmt m gmon pomi m

Let ABC be the gtven trUagle, and P the gfren point ; draw PC, and
divide AB in D, so that AD is to DO as M is to N ; draw DE pamllel to

PC, join PE, and the tnngl* will be divid-

ed bj the line PE into tlM propMed pvta.

For join DC ; then because PC, DE are

parallel, tlie triangles PDE, CDE are eqoal

;

to each add the triangle DEB, then PEB=a
DCB ; and consequently, by taking each from
the triangle ABC, there results the quadri-

lateral ACEP equiralent to the trianrie

ACD. * B
Now. ACD : DCB : : AD : DB : : M : N ; consequently,

ACEP : PEB : : M : N

SCHOLIUM.

The above operation saggests the method of dividing a triangle into any
number of equal parts by lines dravm from a given point in one of its sides

;

for if AB be divided into equal parte, and lines be drawn from the points of

equal division, parallel to PC, tiiey will intersect BC, and AC ; and from

these several points of intersection if lines be drawp to P, they will divide*

the triangle into equal parts.
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PROP. S. PROB.

To divide a triattf « into three equivalent parts by lines drawn from the ver-

' tices oj ihe angles to the same point vnthin the triangle.

Make BD equal to a third part of BC, and draw DE parallel to BA, the

side to which BD is adjacent. From F, the middle of DE, draw the

straight lines FA, FB, FC, and they will

divide the triangle as required.

For, draw DA ; then since BD is one
third of BC, the triangle ABD is ono
third of the triangle ABC ; but ABD=
ABF (37. 1.) ; therefore ABF is one
third of ABC ; also, since DF=FE,
BDF = AFE ; likewise CFD = CFE

,

consequently the whole triangle FBC
is equal to the whole triangle FCA ; and
FBA has been shown to be equal to a third part of the whole triangle

ABC ; consequently the triangles FBA, FBC, FCA, are each equal to a

third part of ABC.

PROP. T. PROB.

To divide a triangle into three equivalent parts, by lines drawn Jrom a given

point within it.

Divide BC into three equal parts in the points D, E, and draw PD, PE ;

draw also AF parallel to PD, and AG parallel to PE; then if the lines

PF, P(J, PA be drawn, the trian-

gle ABC will be divided by them
into three equivalent parts.

For, join AD, AE ; then because
AF, PD are parallel, the triangle

AFP is equivalent to the triangle
AFD

; consequently, if to each of
these there be added the triangle

ABF, there will result the quadri-
lateral ABFP equivalent to the
triangle ABD ; but since BD is a
third part of BC, the triangle ABD
is a third part of the triangle ABC

;

consequently the quadrilateral ABFP is a third part of the triangle ABC.
Again, because AG, PE are parallel, the triangle AGP is equivalent to
the triangle AGE and if to each of these there be added the triangle ACG
the quadrilateral ACGP will be equivalent to the triangle ACE ; but this
vrianglo is one third of ABC ; hence the quadrilateral ACGP is one third
of the triangle ABC : consequently, the spaces ABFP, ACPG. PFG are
each equal to a third part of the triangle ABC.
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PROP. U. PROB.

To divide aquadrHattra! into twoparU hy a strmgkt Urn* drawnfrom th» vtrtm

of one o/iU a>tgUs,so that theparU nuijf b» to 0aek other a* a Ivts M U a»^

other line N.

Draw CE perpendicular to AB.and coostmct a rectangle equiralentto

the given quadrilateral, of which one aide may be CE ; let the other aid«

be EF ; and divide £F in G, lo that

M : N : : GF : EG : take DP equal

lo twice EG, and join PC, then the

quadrilateral will be dirided as re-

quired.

For, by construction, the triangle

CPH is equivalent to the recungle

CE.EG ; therefore the recungle CE,
GF is to the triangle CPB as GF is

to EG. Now CE.GF is equivalent

to the quadrilateral DP, and GF is to EG as M is to N ; therefora,

DP : CPB : : M : N ;

that is, the quadrilateral is divided, as required.

PROP. W. PROa

To divide a quadrilateral vUe two parte hy a lime parallel to one nj its eideo

so that these parte may be to each other as the line M is to the line N.

Produce AD, DC till they meet in E ; draw the perpendicular EF and

bisect it in G. Upon the side GF construct a rectangle equivalent to the

triangle EDC, and let HB be eq\ial

to tiie other side of this rectangle.

Divide AH in K. so that AK : KH
: : M : N, and as AB is to KB. so

make E.\' to Ea* ; draw ab paral-

lel to AH, and it will divide the quad-

rilateral into the required parts.

For Hince the triangles E.AB, Eab
are similar, we have the proportion

EAH : EoA : : EA» : Ea>; but by ^ _ _ _. _
conctTuciion, EA« : Ea» : : AB : -^ ^ ^ "- ^
KB ; so that EAB : EoA : : AB : KB : : AB.GF : KB.GF ; and conse-

quently, since by construction E.\B= .\B.GF, it follows that Eab=zKU
GF, and iherufore AK.GF=A4, and since by construction All.GF=AC
it foUows ihat KH.GF=aC. Now AK.GF : KH.GF : : AK : KH ; btJ

AK : KU : : M : N ; consequently,

A6 : aC : : M : N ;

that is, the quadrilateral is divided, as required.
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PROP. X. PROB.

To divide a quadrilateral into twoparts hy a line drawn from a point in one of

its sides, so that the parts may he to each other as a line M is to a line N.

Draw PD, upon whicli construct a rectangle equivalent to the given

quadrilateral, and let DK be the other

side of this rectangle ; divide DK in

L, so that DL : LK : : M : N ; make
DF=2DL, and FG equal to the per-

pendicular Ka ; draw Gp parallel to

DP
;
join the points P, p, and the

quadrilateral figure will be divided,

as required.

For draw the perpendicular ph
;

then by construction, PD.DK = AC,
and PD.DF = PD.Aa + VD.ph, that

is, PD.DF is equivalent to twice the

sum of the triangles APD, pYD ,

consequently, since DL is half DF,
PD.DL=APpD ; and therefore PD.
LK=PBCp ; but PD.DL : PD.LK : : DL : LK : : M : N ; consequently,

AP;jD : PBCp : : M : N ;

hence the quadrilateral is divided, as required.

PROP. Y. PROB.

To dwide a quadrilateral by a line perpendicular to one of its sides, so that the

two parts may be to each other as a line M is to a line N.

Let ABCD be the given quadrilateral, which is to be divided in the ratio

of M to N by a perpendicular to the side AB.
Construct on DE perpendicular

to AB, a rectangle DE.EF, equi-

valent to the quadrilateral AC,
and divide FE in G, so that FG :

GE : : M : N. Bisect AE in H,
and divide the qiiadrilateral EC
into two parts by a line PQ, paral-

lel to DE, so that those parts may
be to each other as FG is to GH,
then PQ will also divide the quadri-

lateral AC as required.

For, by construction DE.LF=AC, and DE.EH=DAE ; hence DE.
HF=:EC, and consequently, since the quadrilateral EC is divided in the

«ame proportion as the base FH of its equivalent rectangle, it^ follows' that

QC=DE.FG, and EP=DE.GH, also AP=DE.GE ; consequently,

QC : AP : : FG: GE: :M : N;
tnatis, the quadrilateral is divided, as required.

FoXliE
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BOOK I.

OF THE QUADRATURE OF THE CIRCLE.

LEMMA

Am e^trv Urn, or any poi^onal lint, vMtek tnvtUtpu a eonmx lutt J)rtm om
tndtothtoatr^uUmgtrUumtlttmctUfmiUmt.

Let AMB b« ihe enrelopoa U»o ; ih«n will il b« 1*M than the lis*

APDB which envelopes it.

We hare already Mid tkat by the

term convex bne we understand a line,

polyiEOiial, or curve, or partly curve and

jiaruy polygonal, such that a Kiraighi

line cannot cut it in more than two

points. 1 r in the line AM B there were

any sinuosities or re*entrant portions, it

would cease to be convex, because a

straight line might ctit it in more than

two points. The area of a circle are essentially convex ; but the present

proposition extends to any line which fulfils the required conditions.

This being premised, if the line A.MB is not shorter than any of those

which envelope it, there will be (bund among the latter, a line shorter than

all the ra'«t, which is shorter than AMB, or, at most, equal to it. Let

ACDEB be this enveloping lino: any where between those two lines,

draw the straight line PQ, not meeting, or f>.t least only touching, the hne

AMB. The straight line PQ is shorter than PCUEQ ; henco, if instead

of the part PCDEQ, we substitute the straight line PQ, the enveloping line

APQB will be shorUr than APDQB. But, by hypothesis, this latiAsr was
shorter than any other ; hence that hypothesis whs Otlso ; hence all of tha

enveloping lines are longer than A.MB
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Cor. 1. Hence the perimeter of any polygon inscribed in a circle is

less than the circumference of the circle.

Cor. 2. If from a point two straight lines be drawn, louch'ng a circle,

these two lines are together greater than the arc intercepted between

them ; and hence the perimeter of any polygon described about a circle is

greater than the circmnference of the circle.

PROP. L THEOR.

Ifjrom the greater of two unequal magnitudes there he taken away its half,

andfrom the remainder its half; and so on; Tliere voill at length remain

a magnitude less than the least of the proposed magnitudes.

Let AB and C be two unequal magnitudes, of which AB is the greater.

If from AB there be taken away its half, and from the

remainder its half, and so on ; there shall at length

remain a magnitude less than C.

For C may be multiplied so as, at length, to be-

come greater than AB. Let DE, therefore, be a

multiple of C, which is greater than AB, and let it

contain the parts DF, FG, GE, each equal to C.

From AB take BH equal to its half; and from the

remainder AH, take HK equal to its half, and so on,

until there be as many divisions in AB as there are

m DE ; And let the divisions in AB be AK, KH,
HB. And because DE is greater than AB, and EG
taken from DE is not greater than its half, but BH
taken from AB is equal to its half ; therefore the re-

mainder GD is greater than the remainder HA. B C JS
Again, because GD is greater than HA, and GF is

not greater than the half of GD, but HK is equal to the half of HA ; there-

fore the remainder FD is greater than the remainder AK. And FD is

equal to C, therefore C is greater than AK ; that is, AK is less than C.

e:-

ID-

F

-G

PROP. II. THEOR.

Equilateral polygons, of the same number of sides, inscribed in circles, are
similar, and are to one another as the squares of the diameters of the

circles.

Let ABCDEF and GHIKLM be two equilateral polygons of the same
number of sides inscribed in the circles ABD and GHK ; ABCDEF and
GHIKLM are similar, and are to one another as the squares of the diame-
ters of the circles ABD, GHK.

Find N and the centres of the circles, join AN and BN, as also GO
and HO, and produce AN and GO till they meet the circumferences in D
and K.

Because the straight lines AB, BC, CD, DE, EF, FA, are all equal
the arcs AB, BC, CD, DE, EF, FA are also equal (28. 3.). For th«
same reason, the arcs GH, HI, IK, KL, LM. MG are all equal, and they



OF GEOMETRY. BOOK I. 165

re eqaml in number to the other* ; therefore, whatever nert the are AB ta

of the whole circoniferonce ABD, the same ia the arc GH of the circum*

ference GHK. But the angle AND is the same part of four right angtea,

that the arc AB ia of the circumference AUD(33. 0.); and the angle

GOH ia the same part of Jour right angles, that the arc GH ia of the cir-

cumference GHK (33. 6.), therefore the anglea ANB, GOH are each of

them the' same pait of four right angles, and therefore they are equal to

one another. The iaoacelea thangtea ANB, GOH are therefore eqpiian-

gular, and the anrie ABN equal to the ancle GHO ; in the same mannm,
by joining NC, 01, it may be prored that ue anglea NBC, OHI are equal

to one another, and to the angle ABN. Therefore the whole angle ABC

is equal to the whole GHI ; and the same may be prored of the anglea

BCD, HIK, and of the rest Therefore, the polygons AUCDEF and
GHIKLM are equiangular to one another ; and since they are equilatersl,

the sides about the equal angles are proportionals ; the polygon AliCDEP
ia therefore similar to the polygon GHIKLM (def 1.6.). And because simi*

lai polygons are as the squares of their homologous sides (20. 6.), the po>

lygon AUCDEF is to the polygon GHIKLM as the square of Ai3 to the

square of GH ; but because the triangles ANB, GOH are equiangular,

the sqtiare of AB is to the square of GH as the square of AN to the square

of GO (4. 6.), or aa fotu* limes the square of AN to four times the square

(15. 5.) of GO, that is, as the square of AD to the square of GK, (2. Cor.

8. 2.). Therefore also, the polygon ABCDEF is to tho polygon GHIKLM
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as the square of AD to the square of GK ; and they have also been shewn

to be similar.

Cor. Every equilateral polygon inscribed in a circle is also equiangu

lar : For the isosceles triangles, which have their common vertex in the

centre, are all equal and similar ; therefore, the angles at their bases are

all equal, and the angles of the polygon are therefore also equal,

PROP. in. PROB.

The side of any equilateral polygon inscribed in a circle being given, tofind the

side of a polygon of the same number of sides described about the circle.

Let ABCDEF be an equilateral polygon inscribed in the circle ABD
;

it is required to find the side of an equilateral polygon of the same number

of sides described about the circle.

Find G the centre of the circle ; join GA, GB, bisect the arc AB in H
;

and through H draw KHL touching the circle in H, and meeting GA and

GB produced in K and L ; KL is the side of the polygon required.

Produce GF to N, so that GN maybe equal to GL ;
join KN, and from

G draw GM at right angles to KN, join also HG.
'Because the arc AB is bisected in H, the angle AGH is equal to the

angle BGH (27. 3.) ; and because

KL touches the circle in H, the

angles LHG, KHG are right an-

gles (18. 3.); therefore, there are

two angles of the triangle HGK,
equal to two angles of the triangle

HGL, each to each. But the side

GH is common to these triangles
;

therefore they are equal (26. 1.),and

GL is equal to GK. Again, in

the triangles KGL, KGN, because

GN is equal to GL ; and GK com-
mon, and also the angle LGK equal

to the angle KGN ; therefore the

base KL is equal to the base KN
(4. 1.). But because the triangle KGN is isosceles, the angle GKN is

equal to the angle GNK, and the angles GMK, GMN are both right an

gles by construction ; wherefore, the triangles GMK, GMN have two aw

gles of the one equal to two angles of the other, and they have also the

side GM common, therefore they are equal(26. l.),and the side KM is equal

to the side MN, so that KN is bisected in M. But KN is equal to KL,
and therefore their halves KM and KH are also equal. Wherefore, in the

triangles GKH, GKM, the two sides GK and KH are equal to the two
GK and KM, each to each ; and the angles GKH, GKM, are also equal,

therefore GM is equal to GH (4. 1.) ; wherefore, the point M is in the cir-

cumference of the circle ; and because KMG is a right angle, KM touches

the circle. And in the same manner, by joining the centre and the other

angular points of the inscribed polygon, an equilateral polygon may bo
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described about the circle, the sides of which will each be equal to KL, and

will be equal in number to the sides uf the inscribed polygun. Therefore,

KL is the side of an equilateral polygon, described about the circle, of th«

same number of sides with Uie inscribed polyfoa AliCDCF.

Cor. 1. Because GL, GK, GN, and the other straight lines draws
from the centre G to the angular points of the yoijmmn described about the

circle A BD are all equal ; if a circle be described Rom the centre G, witk

the distance GK.tbe polygon wiil be inscribed in that circle ; and there*

fore it 18 similar to the polygon ABCDEP.
Cor. 2. It is OTident thai AB, aside of the inscribed polygon, is to KL,

a side of tlie circusiscribed, as the perpeodictilar from G upon AB, to the

perpendicular from G upon KL,that is, to the raditis of the circle ; there-

fore also, because magnitudes have the same ratio with their equimultiplee

(Id. 5.), the perimeter of the inecribed polygon is to the perimeter of the

circumscribed, as the perpendicular from tne centre, on a side of the in-

scribed polygon, to the radius of the circle.

PROP. IV. THEOR,

A eirtlebeimggirnn^hM mmilarjaolwgons mayb«/*mmd, tkt on* dtgerAtd ttml
the etreU, ami Uu otMarmtcnomm tl, wktek AaU dtfftrfrvm mm anolktr hf
a tpmu iest Man any giera spec*.

Lot ABC be the giren circle, and the aqjuare of D any given apnce ; n
polygon may be inset ibed in the circle ABC, and a similar polygon deaerib-

ed aliout it. so that the difleronce between them shall be less than tka
square of 1).

In the circle ABC apply the straight line AE equal to O, and let ABbe
a fourth part of the circumference of tiie circle. From the circumference

AB take away its half, and from the remainder its half, and so on till the

circumference AF is found less than the circumference AEH. 1. Sup.).

Find the centre G ; draw the diameter AC, as also the stnught lines AF
and FG ; and having bisected the circumference AF in K, join KG, and
draw HL touching the circle in K, and meeting GA and GF produced in

H and L ;
join CF.

Uecaitso the isosceles triangles IIGLand AGF have the conmonaao
gle AGF, they are equiangtdar (0. G.) and the an^es GHK, GAF aro

therufuro equal to one another. But the angle GKH, CFA arc also equal,

lor tliey are right angles; therefore the triangles UGK, ACF, aro like-

wise e<)uiaii}>ular (4. Cor. 32. 1.).

And because the arc AF was found by uking from the arc AB its half,

and from that romainder its half, and so on, AF will be contained a certain

ntunhor of times, exactly, in the arc AU, and ilierefore it will ul»o ba con-
tained a certain number of times, exactly, in tho whole circumference
AUC ; and the straight line AF is therefore the sido of an equilateral poly«

gon inscribed in the circle ABC. Wherefore also, IIL is thn Hide of an
equilateral polygon, of the same number of siden, describe 1 aWiut ABC (3.
1. Sup.). lA»t the polygon doscrihcJ about the cirelo be called VI, and the
polygun inscribed be called N ; then, because the«e polygoiui are similar
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they are as the squares of the homologous sides HL and AF (3. Corol.

20. 6.), that is, because the triangles HLG, AFG are similar, as the square

of HG to the square of AG, that is of GK. But the triangles HGK, ACF
have been proved to be similar, and therefore the square of AG is to the

square of CF as the polygon M to the polygon N ; and, by conversion,

the square of AC is to its excess above the squares of CF, that is, to the

square of AF (47. 1 .), as the polygon M to its excess above the polygon

N. But the square of AC, that is, the square described about the circle

ABC is greater than the equilateral polygon of eight sides described about

the circle, because it contains that polygon ; and, for the same reason, the

polygon of eight sides is greater than the polygon of sixteen, and so on
;

therefore, the square of AC is greater than any pojygon described about

the circle by the continual bisection of the arc AB ; it is therefore greater

than the polygon M. Now, it has been demonstrated, that the square of

AC is to the square of AF as the polygon M to the difference of the poly-

gons ; therefore, since the square of AC is greater than M, the square of

AF is greater than the difference of the polygons (14. 5.). The difference

of the polygons is therefore less than the square of AF ; but AF is less

than D ; therefore the difference of the polygons is less than the square of

D ; that is, than the given space.

CoR. 1. Because the polygons M and N differ from one another more
than either of them differs from the circle, the difference between each of

them and the circle is less than the given space, viz. the square of D. And
therefore, however small any given space may be, a polygon may be in-

scrioed in the circle, and another described about it, each of which shall

differ from the circle by a space less than the given space.
Cor. 2. The space B, which is greater than any polygon that can be

inscribed in the circle A, and less than any polygon that can be described

about it, is equal to the circle A. If not, let them be unequal ; and first,

let B exceed A by the space C. Then, because the polygons described

about the circle A are all greater than D, by hypothesis ; and because B
i.s greater than A by the space C, therefore no polygon can be described
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about the circle A, but what must exceed it by a apace greater than C,

which ia absurd. In the same manner, if B be less than A by the space

C, it is shown that no polygon can be inscribed in the circle A, but what

is less than A by a space greater than C, which is also abeurd. Therefore,

A and B are not unequal ; that is, they are equal to one anoUier.

PROP. V. THEOR.

71l< arta of any eirels is tqual to tkt netatgU eantmned by tMt ttmi iiam$ttr^

and a strmgkt lm$ 0qual to l^lftks eiraimftrtnet.

Let ABC be a circle of which the centre is D, and the diameter AC ; if

in AC produced there be taken AH equal to half the circumference, the

area of the circle is equal to the rectangle contained by DA and AH.
Let AB be the side of any equilateral oolygon inscribed in the circle

JIBC; bisect the circumference AB in G, and through G draw EGF
u uching the circle, and meeting D.\ produced in £, and DB prodnced in

F ; EF will be the side of an equilateral polygon described about the cu
cle ABC (3. 1. Sup.). In AC produced take AK equal to half the peri-

meter of the polygon whose side is AB ; and AL equal to half the perime-

ter of the polygon whose side is EF. Then AK will be less, and AI*

greater than the straight line AH (Lcra. Sup.). Now, because in the

triangle EDF, DO is drawn perpendicular to the base, the triangle EDF
22
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is equal to the rectangle contained by DG and the half of EF (4L I.) ; and
as the same is true of all the other equal triangles having their vertices in

D, which make up the polygon described about the circle ; therefore, the

whole polygon is equal to the rectangle contained by DG and AL, half tho

perimeter of the polygon (L 2.), or by DA and AL. But AL i?

greater than AH, therefore the rectangle DA.AL is greater than the rect-

angle DA.AH ; the rectangle DA.AH is therefore less than the rectangle

DA.AL, that is, than any polygon described about the circle ABC.
, Again, the triangle ADB is equal to the rectangle contained by DM the

perpendicular, and one half of the base AB, and it is therefore less than the

rectangle contained by DG, or DA, and the half of AB And as the same

"K 11 L

^P %J

is true of all the other triangles having ihcir vertices in D, which make
up the inscribed polygon, therefore the wholo ol" the inscribed polygon ii
less than the rectangle contained by DA, and AK half the perimetej- of the
polygon. Now, the rectangle DA'AK is less than DA.AH ; much more,
therefore, is the polygon whose side is AB less than DA.AH ; and the
rectangle DA.AH is therefore greater than any polygon inscribed in the
circle ABC. But the same rectangle DA.AH has been proved to be less
than any polygon described about the circle ABC ; therefore the rectangle
DA.AH is equal to the circle ABC (2. Cor. 4. 1. Sup.). Now DA is the
semidiaraeter of the circle ABC, and AH the half of its circumference.

CoR. 1. Because DA : AH : : DA^ : DA.AH (1. 6.), and because by
this proposition, DA.AH= the area of the circle, of which DA is the ra-
dius

: therefore, as the radius of any circle to the semicircumference, or as
the diameter to the whole circumference, so is the square of the radius to
the area of the circle.

. ^V" 1?" 1
^1^"^^ ^ polygon may be described about a circle, the perime-

ter of which shall exceed the circumference of the circle by a line that is
less thaii any given line. Let NO be the given line. Take in NO the
part NP less than Us half, and also than AD, and let a polygon be describ-
ed abcut the circle ABC, so that its excess above ABC may be less than
the square of NP(1. Cor. 4. 1. Sup.). Let the side of this polygon be EF.
And since, as has been proved, the circle is equal to the rectan-le DA.AH.
and the polygon to the rectangle DA.AL, the excess of the poFygon above
the circle is equal to the rectangle DA.HL ; therefore the rectangie DA.
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HL is Ie»* ^an th« sqtmre of NP ; and therefore, since DA is greater than

NP. HL 19 leas tlian NP, and twicb HL less than twice NP, wherefore,

much more is twice HI^ lest* than NO. But HL is the diflerence between

hair ttie perimeter of the pnlytjon whose side is EF, and half the circutn-

fercru-e of the circle ; ihereforo, twice HL is the difference between the

whole perimeter of the polyson and the whole circumference of the circle

(6. 6.). The difiewince, therefore, between the perineler of the poljgon

•ad the circumference of the circle is lees than the pren line NO.
Cob. 3. Hence, also, a polygon may be inscribed in a circle, sueh

that the excess of the circumference above the perimeter of the polygon

nav be less than unj given line. This is proved like the preceding.

PROP. VI. THEOR

Tkf areas tfcirele$ art to one another m Me itiplkmto r^Haf ere» (A* sgiMriM

of their diameters.

Let ABD and GHL be two circles, of which the diameters are AD and

GL; the circle ABD is to the circle GHL as the square of AD to the

sqiureof GI^.

I^t ABCDEP sad GHKLMN be two eqailaieral polyvMis of the seme
munber of sides inscribed in the circles ABD, GHL ; and let Q be such s

DG

space that the square of .\D is to the square of GL as il p circle ARP lo

xUc *|»ace Q. Itocau!<e the polygons ABCUEF and GHKLMN nre equj-

lateral and of llie same nuinb«r of sides, they are similar ('J. 1 . Sup.\ Siit'
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their areas are as the squares of the diameters of the circles in which they

are inscribed. Therefore AD^ : GL^ : : polygon ABCDEF ; polygon

GHKLMN; but AD^ : GL2 : : circle ABD : Q ; and therefore, ABCDEF
: GHKLMN : : circle ABD : Q. Now, circle ABD/ABCDEF ; there-

fore Q 7GHKLMN (14. 5.), that is, Q is greater than any polygon in-

scribed in the circle GHL.
In the same manner it is demonstrated, that Q is less than any polygoa

described about the circle GHL ; wherefore the space Q is equal to the

oircle GHL (2. Cor. 4. L Sup.). Now, by hypothesis, the circle ABD is

to the space Q as the square of AD to the square of GL ; therefore the

circle ABD is to the circle GHL as the square of AD to the square of GL.

CoR. 1. Hence the circumferences of circles are to one another as

their diameters.

Let the straight line X be equal to half the circumference of the circle

ABD, and the straight line Y to half the circumference of the circle GHL

:

X

And because the rectangles AO.X and GP.Y are equal to the circles ABD
and GHL (5. 1. Sup.), therefore AO.X : GP.Y : : AD^ : GL^ : : AO^ :

GP2 ; and alternately, AO.X : AO2 : : GP.Y : GP^ ; whence, because
rectangles that have equal altitudes are as their bases (1. 6.), X : AO : :

Y : GP, and again alternately, X : Y : : AO : GP : wherefore, taking the

doubles of each, the circumference ABD is to the circumference GHL as

the diameter AD to the diameter GL.
Cor. 2. The circle that is described upon the side of a right angled

triangle opposite to the right angle, is equal to the two circles described on
the other two sides. For the circle described upon SR is to the circle de-

scribed upon RT as the square of SR to the square of RT ; and the circl**

described upon TS is to the circle described upon RT as the square of ST
to the square of RT. Wherefore,
the circles described on SR and on
ST are to the circle described on RT
as the squares of SR and of ST to

the square of RT (24. 5.). But the
squares of RS and of ST are equal
to the square of RT (47. 1.) ; there-
fore the circles described on RS and
ST are equal to the circle described
on RT.

PROP. VH. THEOR.

Equiangular parallelograms are to one another as the products of the num
heis proportional to their sides.

Let AC and DF be two equiangular parallelograms, and let M, N, P
*nd Q be four numbers, such that AB : BC : : M . N ; AB : DE : : M .
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P ; and AB : EP : : M : Q, and therefora ex aquali, DC : EF : ; N : Q.
The parallelogram AC is to the panllelogram DF as MN to PQ.

Let NP be the product of N into P, and the ratio ofMN to PQ will be

compounded of the ratios (def. 10. 5.) of MN to NP, and NP to PQ.
But the ratio of MN to NP is the same with thst of M to P (15. 5.), be«

A B D B
I MN and NP are equimultiples of M and P ; and for the same reason,

the ratio of NP to PQ is the same with that of N to Q ; therefore the ratio

ofMN lo PQ is compounded of the ratios of M to P, and of N to Q. Now.
the ratio ofM to P is the same with that of the side AH to the side DE (by

Hyp.) ; and the ratio of N to Q the same with ihst of the side UC to the

side EF. Therefore, the ratio of MN to PQ is compoonded of the ratios

of AB to DE, and of BC to EF. And the ratio of the pumllelogram AC
to the parallelogram DF is compounded of the sama ratioe (33. 6.) ; there-

fore, the parallelogram AC is to the parallelogram DFas MN, the product

oftlM numbers M and N, to PQ, the product of the numbers P and Q.

CoR. 1. Hence, if GH be to KL as the number M to the number N ;

the square described on GH will be lo

the square described on KL as MM, the (j n j^ ^
square of the niunber M to NN, the

sqtiare of the number N.

CoK. 2. If A, B, C, D, &c. are any lines, and ••, n, r, «, Ac. numbers
proportional to them ; rix. A:B::si:n, A:C::s«:r, A:D::m:».
dec. ; and if the rectangle contained by any two of the lines be equal to the

square of a third line, Uie product of the numbers proportional to the first

two, will be equal to the square of the number proportional to the third ,

that is, if A.C=:B^»lXrsMXn, or=s'.
For by this Prop. A.C : B' :: mXr : n* ; but A.C=B', therefore mxr

=sa'. Nearly in ue same way it may be demonstrated, that whatever is

the relation between the rectangles contained by these lines, there is the

same between the products of the numbers proportional to them.
So also conversely if m and r be numbers proportional to the lines A and

C ; if also A.C=B', and if a number n be found such, that n'=rmr, ihiii

A : B : : m : n. For let A : B : : m : 7, then since m^q, r are proportional

to A, B, and C, and A.C=B' ; therefore, as has just been proved. q^= m
Xr ; but n'=9Xr, by hypothesis, therefore s'a«^, and n=q ; whorcforr
A: B :: m : s

SCHOLIUM.

In order to hsTv numbers proportional to any set of magnitudes <A the
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same kind, suppose one of them to be divided into any number m, of equal

parts, and let H be one of those parts. Let H be found n times in the mag-
nitude B, r times in C, s times in D, &c., then it is evident that the num-
bers m, 11, r, s are proportional to the magnitudes A, B, C and D. When
therefore it is said in any of the following propositions, that a line as A=:
a number m, it is understood that A=mX H, or that A is equal to the given

magnrtude H multiplied by m, and the same is understood of the other

magnitudes, B, C, D, and their proportional numbers, H being the common
measure of all the magnitudes. This common measure is omitted for the

sake of brevity in the arithmetical expression ; but is always implied, when
a line, or other geometrical magnitude, is said to be equal to a number
Also, when there are fractions in the number to which the magnitude is

called equal, it is meant that the common measure H is farther subdivided

into such parts as the numerical fraction indicates. Thus, if A=:360.375,
it is meant that there is a certain magnitude H, such that A=360x H-J-

375—— xH, or that A is equal to 360 times K, together with 375 of the

thousandth parts of H. An^ the same is true in all other cases, where
numbers are used to express the relations of geometrical magnitudes.

PROP. VIIL THEOR.

The perpendicular drawnfrom tJie centre ofa circle on the chord ofany arc is a
mean proportional between half the radius and the line made up ofthe radius
and theperpendicular draumfrom the centre on the chord ofdouble that arc :

And the chord ofthe arc is a mean proportional between the diameter and a line

which is the difference between the radius and the aforesaidperpendicularfrom
the centre

Let ADB be a circle, of which the centre is C ; DBE any arc, and DB
the half of it ; let the chords DE, DB be drawn : as also CF and CG at

right angles to DE and DB ; if CF be produced it will meet the circum
ference in B : let it meet it again in A, and let AC be bisected in H ; CG
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Is a mean proportional betMre«n All and AF ; and BD a mean propoitiagMl

between AU and BF, the excesr of the radius above CF.
Join AD ; and because ADB is a right angle, being an angle in a semi-

circle ; and because CGB is also a right angle, the triangles ADD, CBO
are equiangular, and, AB : AD : : BC : CG (4. 6.), or alternately, AB :

EC : : AD : CG ; and therefore, because AB is double of BC, AD is dan-

blc of CG, and the square of AD therefore equal to four tines the squaro

ofCG.
But, because ADB is a ri^ht andcd triangle, and DF a perpendicular

on AB, AD is a mean proportional between AB and AF (8. 6.), and AD'
rsABAF (17. 6). or since AB is =s4AH, AI)3a4AII.AF. Therefor*

.liso, because 4CG'=AD', 4CG<s4AH.AF, and CG^bAH.AF; where
fore C(i is a mean proportional between AH and AF, that is, between half

the radius and the Kae made up of the radius, and the perpendicular on tb*

chord of twice the are BD.
Again, it is evident that BD is a mean proportional between AB and 3P

(8. 6.), that is, between the diameter and the ezceas of ihtt radius above

the perpettdieukr, on the chord of twice the are DB.

FROP. IX. THEOR.*

Tk0 eircumfertnet ofa eireU exceeds thee tiwtes the diameter, by a line l*$i

than trmofthe parU, ofwkiek the diatiteter amtaims rroea/y, but gremtm
than ten of th§ parts wSeroof the dtameter contaua seventy^ne.

Let ABD be a circle, of which the centre is C, and the diameter AB

;

the circtiml^raaott is graJhc than thrae luaea AB, bj a Una laaa than rg* or

^. of AB, bat greator tUn i2 of AB.

b* mAM lo It ; aiKl tb« rbarmct«r --.oii U<r uutcr ho<i, ii^'nifies ibal xunrthinf U U» be tait*
awaT (rotn il.
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In the circle ABD apply the straight line BD equal to the radius BC :

Draw DF perpendicular to BC, and let it meet the circumference again in

E ; draw also CG perpendicular to BD : produce BC to A, bisect AC in

H, and join CD.
It is evident, that the arcs BD, BE are each of them one-sixth of the

circumference (Cor. 15. 4.), and that therefore the arc DBE is one third of

the circumference. "Wherefore, the line (8. 1. Sup.) CG is a mean pro-

portional between AH, half the radius, and the line AF. Now because the

sides BD, DC, of the triangle BDC are equal, the angles DCF, DBF are

also equal ; and the angles DFC, DFB being equal, and the side DF com-

mon to the triangles DBF, DCF, the base BF is equal to the base CF, and

BC is bisected in F.

Therefore, if AC or BC=1000, AH=500, CF=500, AF=1500, and

CG being a mean proportional between AH and AF, CG2=(17. 6.) AH.
AF=500x 1500=750000; wherefore CG=866.0254+, because (866.

0254)2 is less than 750000. Hence also, AC+CG=1866.0254-f.
Now, as CG is the perpendicular drawn from the centre C, on the chord

of one-sixth of the circumference, if P = the perpendicular from C on the

chord of one-twelfth of the circumference, P will be a mean proportional

between AH (8. 1. Sup.) and AC-fCG, and P2=AH (AC-fCG)=
500 X (1866.0254+) = 933012.7 -f. Therefore, P = 965.9258+, be-

cause (965.9258)2 ig jess than 933012.7. Hence also, AC+P= 1965.

9258+.
Again, if Q = the perpendicular drawn from C on the chord of one

twenty-fourth of the circumference, Q will be a mean proportional between
AH and AC+P, and Q2=AH (AC+P)=500(1965.9258+)=982962.
9+ ; and therefore Q=991.4449+, because (991.4449)2 is less than

982962.9. Therefore also AC+Q=1991.4449+.
In like manner, if S be the perpendicidar from C on the chord of one

forty-eighth of the circumference, S2=AH (AC+Q)=500 (1991.4449+)
=995722.45+ ; and S=997.8589+, because (997.8589)2 is less than

995722.45. Hence also, AC+ S= 1997.8589+ .

Lastly, if T be the perpendicular from C on the chord of one ninety-sixth

of the circumference, T3=AH (AC+ S)=500 (1997.8589+)=998929.
45+ , and T=999.46458+. Thus T, the perpendicular on the chord of
one ninety-sixth of the circumference, is greater than 999.46458 of those
parts of which the radius contains 1000.

But by the last proposition, the chord of one ninety-sixth part of the cir-

cumference is a mean proportional between the diameter and the excess of
the radius above S, the perpendicular from the centre on the chord of one
forty-eighth of the circumference. Therefore, the square of the chord of
one ninety-sixth of the circumference=AB (AC— S) =2000 X (2.1411—,)
=4282.2--; and therefore the chord itself =65.4386— , because {65.
4386)2 is greater than 4282.2. Now, the chord of one ninety-sixth of the
circumference, or the side of an equilateral polygon of ninety-six sides in-

scribed in the circle, being 65.4386— , the perimeter of that polygon will be
= (65.4386— ) 96=6282.1056—

.

Let the perimeter of the circumscribed polygon of the same number of
sides, be M,then (2. Cor. 2. 1. Sup.)T : AC : : 6282.1056— : M, that is,

(since T=999.46458+ , as already shewn).
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999.46458-f : 1000 : : 6282.1056— : M ; if then N be such,

Jnt 999.46458 : 1000 : : 6282.1056— : N ; ex aqoo perturb. 999.46458

-f> : 999.46458 : : N : M ; and, since the first is greater than the seoood,

the third is greater than the fourth, or N is greatwr than M.
Now, if a fooTth propovtional be found to 999.46458, 1000 and 6282.

1056 viz 6285.461—.tbM,
becns*. 999^6458 : 1000 ; : 6282.1056 : 6285.461—,

and as before, 999.46458 : 1000 : : 6282.1056— : N ;

therr/ore, 0382.1090 : 6282.1056- : : 8285.461-N, and as the first of

ineae propcmooafa U grealer than the secosd, the third, ris. 6385 46*

is greater than N, the footlh. But N was prored t» be |[realer than M ;

rach more, tharsferw, is 6285.461 greater than M, the penoMter of a poly>

gon of ninety-six sides circumscribe about the circle ; that is, the perime>

ter of that polygon is less than 6285.461 ; now, the circumference of the

circle is leas than the perimeter of the polygon ; much more, tlterefore, is it

less than 6285.461 ; wherefore the circumference of a circle is less than

6285.461 of thosu parts of which the radius contains 1000. The circum-

ference, therefore has to the diameter a less ratio (8. 5.) than 6285.461 has
to 2000, or than 3142.7305 has to 1000 : but the ratio of 22 to 7 is greater

than the ratio of 3142.7305 to 1000, therefore the circumference has a less

ratio to the diameter than 22 has to 7, or the circumference is less than 22
nf the parts of which the diameter contains 7.

It remains to demonstrate, that the part by which the circimiferenee ex-

ceeds the diameter is greater than —- of the diameter.

It was before shewn, Aat CG'=s750000; wherefore C0=866.02545—.
because (866.02545)* is greater than 750000 ; therefore AC-hCGsl866.
02545—.
Now, P being, as before, the perpendicular from the centre on the choril

of one twelfth of the circumference, P2=AH (.\C+CG) a^.OOOxClSetf
02545)— =933012.73— ; and P = 965.92585—.because (9G5.9'2385)»

is greater than 633012.73. Hence also, AC+P= 1965.92585

—

23
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Next, as Q= the perpendicular drawn from the centre on the chord of

one twenty-fourth of the circumference, Q2=AH (AC+P)=500x (1965.

92585— ) =982962.93— ; and Q = 991.44495—, because (991.44496)*

is greater than 982962.93. Hence also, AC+Q=1991.44495—

.

In like manner, as S is the perpendicular from C on the chord of one

forty-eighth of the circumference, S2=AH (AC-hQ)=500(1991.44495—

)

=995722.475—, and S =(997.85895 -n^ because (997.85895)2 jg greater

than 995722.475.

But the square of the chord of the ninety-sixth part of the circumference

=AB (AC—S)=2000 (2.14105+)=4282.1-f, and the chord itself ?=

65.4377-t- because (65.4377)^ is less than 4282.1 : Now the chord of one

ninety-sixth part of the circumference being =65.4377-}-, the perimeter

of a polygon of ninety-six sides inscribed in the circle =(65.4377-|-)96=
6282.019-}^. But the circumference of the circle is greater than the pe-

rimeter of the inscribed polygon ; therefore the circumference is greater

than 6282.019, of those parts of which the radius contains 1000 ; or than

3141.009 of the parts of which the radius contains 500, or the diameter

contains 1000. Now, 3141.009 has to 1000 a greater ratio than 3-h -y

to 1 ; therefore the circumference of the circle has a greater ratio to the

diameter than 3-\- ;:^h3.s to 1 ; that is, the excess of the circumference
1 1

above three times the diameter is greater than ten of those parts of which
the diameter contains 71 ; and it has already been shewn to be less than

ten of those of which the diameter contains 70.

CoR. 1. Hence the diameter of a circle being given, the circumference
may be found nearly, by making as 7 to 22, so the given diameter to a

fourth proportional, which will be greater than the circumference. And

if as 1 to 3 + —, or as 71 or 223, so the given diameter to a fourth pro-

portional, this will be nearly equal to the circumference, but will be less

than it.

Cor. 2. Because the difference between - and —- is ——-, therefore the
7 71 497

lines found by these proportionals differ by —— of the diameter. There-

fore the difference of either of them from the circumference must be less
than the 497th part of the diameter.

CoR. 3. As 7 to 22, so the square of the radius to the area of the circle

nearly.

For it has been shewn, that (1. Cor. 5. 1. Sup.) the diameter of a cir

cle is to its circumference as the square of the radius to the area of the
circle

; but the diameter is to the circumference nearly as 7 to 22, there-
fore the square of the radius is to the area of the circle nearly in that same
ratio
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SCHOLIUM.

It is endent that the method employed in this proposition, for finding

the limits of the ratio of the circumference of the diameter, may be carried

to a greater degree of exactness, by finding the perimeter of an inscribed

mad of a circumscribod polygon of a greater number of sides than 96. The
manner in which the perimeters of such polygons approach nearer to one

another, as the number o( their sides increases, may be seen from the fol>

lowing Table, which is constructed on the princifrfes explained in the fore

going Proposition, and in which the radius is •iippoaed b1.

NO. cf Sides Penmeter of ihe Perimeter of the

of (he Polj- inscribed Poly- circanucribed
fOO. fon. Pulygoo.

6 6.000000 6.822033—
12 6.211657+ 6.430781—
24 6.265257+ 6.319320-
48 6^278700+ 6592173-
96 6.282063+ 6.285430—
192 6.282904+ 6.283747—
384 6.283115+ 6.283327—
768 6.283167+ 6^283221-
1536 6.283180+ 6.283195—
3072 6.283184+ 6.283188-
6144 6.283185+ 6.283186-

The part that is wanting in the numbers of the second column, to make
up the entire perimeter of any of the inscribed polygons, is less than unit

in the sixth decimal place ; and in Uke manner, the part by which the

numbers in the last column exceed the perimeter of anv of the circumscrib-

ed polvgons is loss than a unit in the sixth decimal place, that is, than

innnnnn °^ ^° radius. Also, as the numbers in the second column are

less than the perimeters of the inscribed polygons, they are each of them
less tlian the circumference of the circle ; and for the same reason, each of

those in the third coliunn is greater than the circumference. But when

the arc of - of the circumference is bisected ten times, the number of sides
o

in the polygon is 6144, and the numbers in the Table differ from one an-

other only by
^ ^^^^ part of the radius, and therefore the perimeters of

the polygons ditfer by less than that quantity ; and consequently the cir-

cumference of the circle, which ia greater than the least, and less than the

greatest of these niunbers, is determined within less than the millionth

part of the radius.

Hence also, if R be the radius of any circle, the circumference is greater

than Rx6.2B3ie5,or than 2Rx 3.141592, but less than 9Rx3.141593;
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and these numbers differ from one another only by a millionth part of the

radius. So also R2+3.141592 is less, and R^x 3.141593 greater than the

area of the circle ; and these numbers differ from one another only by a

millionth part of the square of the radius.

In this way, also, the circumference and the area of the circle may be

found still nearer to the truth ; but neither by this, nor by any other me-
thod yet known to geometers, can they be exactly determined, though the

errors of both may be reduced to a less quantity than any that can be a»>

signed.
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DEnNITIONS.

•. A STEAioHT lin« it perpendioolmr or at right angles to a plane, whea
it makea right anglea with ereiy straifht line which it meet* in that

plane.

2. A plane ii perpendicular to a plane, when the straight lines Arawn in

one of the planes perpendicular to the common section of the two plaaee.

are perpendicular to the other plane.

3. The inclination of a straight line to a piano is the acute angle contained

by that straight line, and another drawn from the point in which the

first line meets the plane, to the point in which a perpendicular to the

plane, drawn from any point of the first line, meets the same plane.

4. The angle made by two planes which cut one another, is the angle con-

tained by two straight lines drawn from any, the same point in the line

of their common section, at right angles to that line, the one, in the one
plane, and the other, in the other. Of the two adjacent angles made by
two lines di-awii in Uiis manner, that which is acute is also called the In*

cliiiation of the planes to one another.

5. Two planes are said to hare the same, or a like inclination to one an-

other, which two other planes hare, when the angles of inclination above
defined are equal to one another.

i. A straight line is said to be parallel to a plane, when it does not meet
the plane, though produced erer so far.
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7. Planes are said to be parallel to one another, which do not meet, though

produced ever so far.

8. A solid angle is an angle made by the meeting of more than two plane

angles, which are not in the same plane in one point.

FRCP. L THEOR.

Onepart of a straight line cannot be in a plane aftd another part above it.

If it be possible let AB, part of the straight line ABC, be in the plane,

and the part BC above it : and since the

straight line AB is in the plane, it can be C
produced in that plane (2. Post. 1.); let ^^
it be produced to D : Then ABC and r

"Ẑ \

ABD are two straight lines, and they \ ^^ \

have the common segment AB, which is \ ^r "n" Ti \
impossible (Cor. def. 3. 1.). Therefore

\A J3 X>
\

ABC is not a straight line.

PROP. IL THEOR

Any three straight lines which meet one another, not in the samepoint, are tn

^
one plane.

Let the three straight lines AB, CD, CB meet one another in the points
B, C and E ; AB, CD, CB are in one plane.

Let any plane pass through the straight line

EB, and let the plane be turned about EB, pro-

duced, if necessary, until it pass through the

point C : Then, because the points E, C are in

this plane,thestraight line EC is in it (def. 5. 1.)

:

for the same reason, the straight line BC is in

the same ; and, by the hypothesis, EB is in it

;

therefore the three straight lines EC, CB, BE
are in one plane : but the whole of the lines DC,
AB, and BC produced, are in the same plane
with the parts of them EC, EB, BC (1. 2.

Sup.) Therefore AB, CD, CB, are all in one
plane.

Cor. It is manifest, that any two straight lines which cut one anothei
are in one plane ; Also, that any three points whatever are in one plane
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PKOP. III. THEOR.

(ftwf planes cut om another^ their common tectum tsa straight Km.

let two planes AB, BC cut one another,

and let U and D be two points in ilie line of

tlieir common section. From B to D drmw the

straight line UD; and beca\ise the poinU B
and i) are in the plane AB, the airtight line

BD is in that plane (def. 5. 1.) : for the same
reason it is in the plane CB ; the stmight line

BD IS therefore common to the planes AB
and BC, or it is the common socuon of these

olanes.

PROP. IV. THEOR.

If a straight line stand at right angles to oach oftwo ttraigkt bmtt bt tJ^
ptitnt of iketr tntersection, U wUi also bo at right mng^oo to tho oloMM m
whteh these Unes ore.

I.et the straight line AB stand at right angles to esch of the straight

Unes EF. CI) ia A, the point of thutr intrrsecuon : AB is also at rightao-
gles to the plnnc passing through EF, CD.
Through A draw any line AG in the

plane in which are EF and CI) ; let G be

any point in that lino; draw Gil parallel

to A!) ; and make HFsHA, join FG ; and
when prtMlmed let it meet CA in !>; join

HI), 1K:. hi. Because GH is parallel u>

AD, and F1I=HA: therefore FG=GD,
so that ih«> lino l)F is bisected in G. And
because BAD is a right angle, BD-sAB'
•fAl)'' (47. I.); and for the same reason,

Bh'» = AB-+AF», therefore HlJ^BF^ss
2AB- -f AU2 ^- AF*; and because DF is

bisecu-d in G (A. 2.). AD'4-AF''=2AG'-f
2GF^ therefore BD»+BF»=2AB"'+2AG»
+2GF-
2Gr*=2AB-+2AG2-|-2GI-'' ; and talung 2GF» from both, 2HG2=2AB«
^-2AG^o^ HG2= AB'-fAG'; whence BAG (18. 1.) is a right anjrle.

Now AG is any straight line drawn in the plane of the lines A I), AF ; and
when a stmiglit line is at right angles to any straight line which it meets
with in a plane, it is at right angles to tlie plane it8eir(dcf. 1. 2. Sup.). AB
is therefore at right angles to the plane of the lines AF, .\D.

But BD' -f Bl-^== (A. 2.) 2BG5-f2GF», therefore 2BG»-|-
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PROP. V. THEOR.

Ifthree straight lines meet all in one point, and a straight line stand at right

angles to each ofthem in that point ; these three straight lines are in one

and the same plane.

Let the straight line AB stand at right angles to eanh of the straight

lines BC, BD, BE, in B, the point where they meet ; BC, BD, BE are in

one and the same plane.

If not, let BD and BE, if possible, be in one plane, and BC be above it

;

and let a plane pass through AB, EC, the common section of which with

the plane, in which BD and BE are, shall be a straight (3. 2. Sup.) line

;

let this be BF : therefore the three straight lines AB, BC, BF are all in

one plane, viz. that which passes through AB, BC ; and because AB
stands at right angles to each of the straight lines BD, BE, it is also at

right angles (4. 2. Sup.) to the plane passing

through them ; and therefore makes right an-

gles with every straight line meeting it in that
^

plane ; but BF which is in that plane meets it

;

therefore the angle ABF is a right angle ; but

the angle ABC, by the hypothesis is also a right

angle ; therefore the angle ABF is equal to the

angle ABC, and they are both in the same
plane, whichis impossible : therefore the straight

line BC is not above the plane in which are BD
and BE : Wherefore the three straight lines

BC, BD, BE are in one and the same plane.

PROP. VL THEOR.

Two straight lines which are at right angles to the same plane, are parallel to

one another.

Let the straight lines AB, CD be at right angles to the same plane BDE
;

AB is parallel to CD.
Let them meet the plane in the points B, D.

Draw DE at right angles to DB, in the plane BDE,
and let E be any point in it : Join AE, AD, EB.
Because ABE is a right angle, AB2+BE2= (47. 1.)
AE2, and because BDE is a right angle, BE2=BD2
-fDE2; therefore AB2+BD24-DE2=AE2

; now,
A.B2-J.BD2=AD2, because ABD is a right angle,
therefore AD2+DE2=AE2, and ADE is therefore
a (48. 1.) right angle. Therefore ED is perpendi-
cular to the three lines BD, DA, DC, whence these
Imes are in one plane (5. 2. Sup.). But AB is in the
plane in which are BD, DA, because any three
straight lines, which meet one another, are in one
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flaae (2. 2. Sup.) : therefor© AB, BD, DC are in on© plan© ; and each of

Um anises ABD, BDC u a right angle ; therefora AB is parallel (Cor. 28

I.) to CD.

PROP. VII. THEOR.

IfttDO Straight Mtus he paraUely and one oftktm at right angles to a oUmt

,

the other is also at right angles to the same pime.

Let AB. CD be two parallel aini^ht

iiaea, and let one of them AB be ai

right nng\e» to a plane ; the other CD
is at right angles to the same plane.

For, if CD be not perpencliciilsr lo

the plane to which AB is perpeodirular»

let DG be perpendicular to it. Then
(C.2. Sup) DG is parallel to AB: DG S
and DC therefore are both parallel to

AB, and are drawn through the same
point D, which is impossible (11. Ax.

PROP. VIII. THEOK.

Tu>o straight lines which are each of them parallel to the same straight UmSf

though not both in the same plane with it, are parallel to one another.

Lei AB, CD be each of them parallel to £F. and not in the same plane

with it ; AB shall be parallel to CD.
In £F take anj point G, from which draw, in the plane passing through

EFi AB, tho straight line GH at right angles to ^F; and in the piano

passing through EF, CD, draw GK at right angles to the same EF.
And because KF is perpendicular both to GH and GK, it is perpendicular

(4. 2. Sup.) to the plane HGK passing through them : and EF is parallel

to AB ; therefore AB is at right

angles (7. 2. Sup.) to the plane

HGK. For the same reason, CD
is likewise at right angles to the

plane HGK. Therefore AB. CD
are each of them at right angles

to the plane HGK. But if two

straight lines are at right angl©s ^
to th© same plane, they are paral- ^ ~

lei (6. 2. Sup.) to one another. Therefore AB is parallel to CD.

PROP. IX. THEOR.

If two straight lines meeting one another be parallel to two others that meet one

another, though not in the same plane mth thefirst two ; thefirst two and the

ot/ier two shall contain equal angles.

l^i the two straight lines AB, BC which meet one another, be parallel

24
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to tlie two straight, lines DE, EF that meet one another, and are not in the

ame plane with AB, BC. The angle ABC is equal to the angle DEF
Take BA, BC, ED, EF all equal to one an-

other ; and join AD, CF, BE, AC, DF : Because

BA is equal and parallel to ED, therefore AD is

(33. 1.) both equal and parallel to BE. For the

same reason, CF is equal and parallel to BE.
Therefore AD and CF are each of them equal and

parallel to BE. But straight lines that are paral-

lel to the same straight line, though not in the

same plane with it, are parallel (8. 2. Sup.) to one

another. Therefore AD is parallel to CF ; and it

is equal to it, and AC, DF join them towards the

same parts; and there.^'ore (33. L) AC is equal

plmI parallel to DF. And because AB, BC are

rqual to DE, EF, and the base AC to the base

DF" ; the angle ABC is equal (8. L) to the angle

DEF.

PROP. X. PROB.

To draw a straight line perpendicular to a plane,frojn a given point above tt.

Let A be the given point above the plane BH, it is required to draw from

the point A a straight line perpendicular to the plane BH.
In the plane draw any straight line BC, and from the point A draw (Prop.

12. L)ADpeipendicular to BC. If then AD be also perpendicular to the

plane BH, the thing required is already done ; but if it be not, from the

point D draw (Prop. 11. 1.), in the

plane BH, the straight line DE at

right angles to BC ; and from the
point A draw AF perpendicular to

DE
; and through F draw (Prop. 31

1.) GH parallel to BC : and because
BC is at right angles to ED, and DA,
BC is at right angles (4. 2. Sup.) to

the plane passing through ED, DA.
And GH is parallel to BC ; but iftwo
straight lines be parallel, one of which is at right angles to a plane, the
other shall be at right (7. 2. Sup.) angles to the same plane ; whereforeGH IS at right angles to the plane through ED, DA, and is perpendicular
^(let. 1. >.. Sup.) to every straight line meeting it in that plane. But AF,
which is m the plane through ED, DA, meets it : Therefore GH i. per-
pendicular to AF, and consequently AF is perpendicular to GH ; and AF
IS also perpendicular to DE : Therefore AF is perpendicular to each of the
straight hues GH DE. But if a straight Hne stands at right angles to
eachof two straight hues in the pointof their intersection, it is also atri-ht
angles to the plane passing through them (4. 2. Sup.). And the plane
passing through ED, GH is the plane BH : therefore AF is perpendicula,
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to the plane BH ; bo that, from thf piTeti point A, abore the plane BH,
the straight hue AF is drawn perpendicular to that plane.

Cor. If it be required from a point C in a plane to erect a perpen

dicular to tliat plane, take a point A above the plane, and draw AF per-

pendicular to the plane ; then, if from C a line be drawn parallel to AF,
it will be the perpendicular required; for being parallel to AF it will be

per]>endiculur to the sauie plane U> which AF is perpendicular (7. 2. Sup.)

PROP. XI. THEOR.

TVoin the same point ui a pioM, tktre amnct bt two straight hnes at right

angles to the plane, upon the same side of it ; And there can be hut one

perpendiadar to a plane from a point above it.

For if it be possible, let the two straight lines AC, AB be at right angles

10 a given plane from the same point A in the plane, and upon the aame
side of it ; and let a plane pass through DA, AC ; the common section of

this plane with the given plane is a straight (3. 2. Sup.) line passing through

A : Let DAE be their common section : Therefore the straight lines AB,
AC, DAE are in one plane: And because CA is at right angles to the

given plane, it makes right angles with every

straight line meeting it in that plane. But
DAE, which is in that plane, meets CA : there-

fore CAE u a right angle. For the same rea-

son BAE is a right angle. Wherefore the an-

gle CAE is equal to the angle BAE; and
they are in one plane, which u impossible.

Also, from a point above a plane, there can be
but one perpendicular to that plane ; for if there

could bo two, they would be parallel (6. 2. Sup.) to one another, which i«

absurd.

PROP. XII. THEOR.

Planes to which the same straight line is perpendieuiar, are parallel to one
another.

Let the straight line AB be perpendicular to

each of the planes CD, EF : these planes are pa-
fmllel to one another.

If not, ihey must meet one another when pro-

duced, und llieir comnK>n section must be a sirai|;ht

line GH, in which uke any point K, and join AK,
BK : Then, because AB is perpendicular to the

plaad EF, it it perpendicular (def. 1. 2. Sup.) to

the nruigbt lino BK. wliich is in that plane, and
therefore ABK is a right angle. For the same
reason, BAK is a ripht anijle ; wherefore the "wo
anjjK's ABK, BAK of the triangle ABK are

f'lual to two right angles, which is impossible.
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(17. L): Therefore the planes CD, EF, though produced, do not meet

one another ; that is, they are parallel (def. 7. 2. Sujp.).

PROP. Xin. THEOR.

If two straight lines meeting one another, be parallel to two straight lines

which also meet one another, but are not in the same plane with the first

two : the plane which passes through the first two is parallel to the plane

passing through the others.

Let AB, BC, two straight lines meeting one another, be parallel to DE,

EF that meet one another, but are not in the same plane with AB, BC :

The planes through AB, BC, and DE, EF shall not meet, though pro-

duced.

From the point B draw BG perpendicular (10. 2. Sup.) to the plane

which passes through DE, EF, and let it meet that plane in G ; and

through G draw GH parallel to ED (Prop. 31. 1.), and GK parallel to EF :

And because BG is perpendicular to the plane through DE, EF, it musi

make right angles with every

straight line meeting it in that

plane (1. def. 2. Sup.). But

the straight lines GH, GK in

that plane meet it : Therefore

each of the angles BGH, BGK
is a right angle : And because

BA is parallel (8, 2. Sup.) to

GH (for each of them is paral-

lel to DE), the angles GBA,
BGH are together equal (29.

1.) to two right angles: And
BGH is aright angle ; therefore also GBA is a right angle, and GB per-

pendicular to BA : For the same reason, GB is perpendicular to BG :

Since, therefore, the straight line GB stands at right angles to the two
straight lines BA, BC, that cut one another in B ; GB is perpendicular

(4. 2. Sup.) to the plane through BA, BC : And it is perpendicular to the

plane through DE, EF ; therefore BG is perpendicular to each of the

planes through AB, BC, and DE, EF : But planes to which the same
straight line is perpendicular, are parallel (12. 2. Sup.) to one another

:

Therefore the plane through AB, BC, is parallel to the plane through
DE, EF.

CoR. It follows from this demonstration, that if a straight line meet
two parallel planes, and be perpendicular to one of them, it must be per-

pendicular to the other also.
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PROP. XIV. THEOR.

If two peralUl pUtu* be cut bff another plane, their common seettons tettA ti

mre parallels.

Let the paralle! planes AB,
CD, be cut by the plane EFHG,
and let their common sectiona with

it be EF, GH ; £F U parallel to

GH.
For the straight lines EF and

GH are in the same pbDe,«i&
EFHG which cuu the planes

AB and CD ; and they do not

meet though produced; for tb«

ptaaas in which they are do not

meet; therefore EF and GH are pavaHel (deC SO. !.)•

ANv

PROP. XV. THEOR.

1/ two parallel plamu be cut by a tJurd olane^ tkejf have tie same inclination

to that piano.

Let AB and CD be two paraOel pinet, and EH a third plane etitting

them ; The planes AB and CD are equally inclined to EH.
Let the straight lines EF and GH be the common section of the plane

EH with the two planes AB and CD ; and from K, any point in EF, draw
in the plana EH the straight line KM at right an^es to EF, and lei it

meet GH in L; draw also KN at right angles to EF in the plane AB:
and through the straight lines KM, KN, let a plane be made to pass, c^
ting the plane CD in the Une LO. And because EFand GH are the

common sections of the plane EH with the two parallel planes AB and

CD, EF is parallel to GH (14. 2. Sup.). But EF is at right angles •»

the plane that passes through KN and KM (4. 2. Sup.), because it is at

right angles to the lines KM and KN : therefore GH is also at right an-

gles to the same plane (7. 2. Sup.), and it is therefore at right angles M
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^UnesLMLOwMcUt^^in.^

"-"i r/thfano-re'OLM is^h ncUnLtion of the plane CD to the pUne

f^ ^4 ief 2 Supr For the same reason the angle MKN is the inchna.

EH (4 del. 2. bup.). r or
^^^^^ ^^^ ^^^ LO are pa-

tion of the plane AB to the P^^'^^^-*'" , ^^„„j^llel planes AB and CD with
rallf-1 beino- the common sections ot the parauei piduca xi

raiiti, oting wic v-y
TviTM i« Pfiiial to the exterior anale UL.i\l

lo the inclination of the plane CD to the same plane EH.

PROP. XVL THEOR.

Jftwo straight Unesbe cut by parallel planes, they must he cut in the same ratw

Let the straight lines AB, CD be cut by the parallel planed GH. KL.

MN, in the points A, E, B ; C F, D

:

As AE is to EB, so is CF to FD.

Join AC, BD, AD, and let AD meet

the plane KL in the point X ; and join

EX, XF: Because the two parallel

planes KL, MN are cut by the plane

EBDX, the common sections EX, BD,

are parallel (14. 2. Sup.). For the same

reason, because the two parallel planes

GH, KL are cut by the plane AXFC,
the common sections AC, XF are paral-

lel : And because EX is parallel to BD,

a side of the triangle ABD, as AE to

EB, so is (2. 6.) AX to XD. Again, be-

cause XF is parallel to AC, aside of the

mangle ADC, AX to XD, so is CF to

FD : and it was proved that AX is to XD,
as AE to EB : Therefore (11. 5.), as AE
to EB, so is CF to FD.

PROP. XVn. THEOR.

Ifa straight line he at right angles to a plane, every plane which passes through

that line is at right angles to the first mentioned plane.

Let the straight line AB be at right angles to the plane CK ;
every plane

which passes through AB is at right angles to the plane CK.
Let any plane DE pass through AB, and let CE be the common section

of the planes DE, CK ; take any point F in CE, from which draw FG m
Ae plane DE at right angles to CE : And because AB is perpendicular

so the plane CK, therefore it is also perpendicular to every straight line

meeting it in that plane (1. def. 2. Sup.) ; and consequently it is perpen-

dicular to CE : Wherefore ABF is a right angle ; But GFB is likewise a

right angle ; therefore AB is paralh^l (28. ] .) to FG. And AB is at right

angles to the plane CK : therefore FG is also at right angles to the same
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pUne (7. 2. Sup.). But one plane is

at right angles to another plane when
the straight lines drawn in one of the

planes, at right angles to their com*
mon section, are also at right angles

tu the other plane (def. 2. 2. Sup.) ; and

any straight line FG in the plane DE,
«yhich is at right angles to CE, the

common section of the planes, has been
proved lu t>o perpendicular to the other

plojie CK ; therefore the plane UE
IS at right angles to the plane CK. In like manner, it may be prored
that all the planes which pass through AB are at right angles to the plane

CK.

PROP. XVIII. THEOR.

If twoplanes cutting one another be each of them perpendicular to a tAirJpLmo
their common section is prrpendiadar to the same plane.

I«ot the two planes AB, BC be each of tliom i)crpendicular to a third

plane, and BD be the common section of the first two \ BD is perpendicular
to the plane .\DC.

From I) in the plane ADC, draw DE perpen>

dicular to AD, and DF to DC. Because DE is

perpendicular to AD, the common section of the

planes AB and ADC ; and because the plane

AB is at right angles to ADC. DE is at right

angles to the plane AB (def. 2. 2. Sup.), and there-

fore also to the straight line BD in that plane

(dcf. 1.2. Sup). For the same reason, DF is at

right angles to DB. Since BD is therefore at

right angles to both the lines DE snd DF, it is

at right angles to the plane in which DE and
DF are, that is, to the plane ADC (4. 2. Sup.).

D
^/'^^^l

A. £

PROP. XIX. PROS.

Tu>o straight lines not in the same plane being given in position, to draw a

straight line perpendteular to them both.

Let AB and CD be the given lines, which are not in the same plane ; it

is required to draw a straight line which shall be perpendicular both lu .VU

and CD.
In AB take any point E, and through E draw EF parallel to CD, and

let EG be drawn perpendicular to the plane which passes through Kii,

EF (10. 2. Sup.). Through AB and EG let a plane pass, viz. GK, and let

this plane meet CD in H; from H draw HK perpendicular to .\U ; and

HK is the line required. Through H, draw HG parallel to AB.
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Then, since HK and GE, which are in the same plane, are both at right

angles to the straight line AB, they are parallel to one another. And be--

cause the lines HG, HD are parallel to the lines EB, EF, each to each,

vhe plane GHD is parallel to the plane (13. 2. Sup.) BEF ; and therefore

EG, which is perpendicular to the plane BEF, is perpendicular also to the

plane (Cor. 13. 2. Sup.) GHD. Therefore HK, which is parallel to GE,
is also perpendicular to the plane GHD (7. 2. Sup.), and it is therefore per-

pendicular to HD (def. L 2. Sup.), which is in that plane, and it is also

perpendicular to AB ; therefore HK is drawn perpendicular to the two
given lines, AB and CD.

PROP. XX. THEOR.

If a solid angle be contained by three plane angles, any two of these angles are

greater than the third.

Let the solid angle at A be contained by the three plane angles BAG,
CAD, DAB. Any two of them are greater than the third.

If the angles BAG, CAD, DAB be all equal, it is evident that any two
of them are greater than the third. But if they are not, let BAG be that

angle which is not less than either of the other two, and is greater than
one of them, DAB ; and at the point A in the
straight line AB, make in the plane which
passes tlirough BA, AC, the angle BAE equal
(Prop. 23. 1.) to the angle DAB; and make
AE equal to AD, and through E draw BEG
cutting AB, AC in the points B, C, and join
DB, DC. And because DA is equal to AE,
and AB is common to the two triangles ABD,
ABE and also the angle DAB equal to the
angle EAB

; therefore the base DB is equal (4. L)to the base BE. And
because BD, DC are greater (20. 1.) than CB, and one of them BD has
been proved equal to BE, a part of CB, therefore the other DC is greater
than the remaining part EC. And because DA is equal to AE, and AC
common, but the base DC greater than the base EG ; therefore the angle
DAG is greater (25. 1.) than the angle EAG ; and, by the construction,
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the angle DAB is equal to the angle BAC ; wherefore the angles DAB,
DAC are together greater than BA£, EAC, that is, than the angle BAC
But BAC is not less than either of the angles DAB, DAC ; therefor*

BAC, Mrith either of them, is greater than the other.

PROP. XXI. THEOR.

The pUuu angUs which contain amvmM ngU mn U^her Uu thm ftm
right ai^Us.

Let A be a solid ang e contained by any number of plane angles BAC,
CAD, DAE, EAF, FAB ; these together are less than four right angles.

Let the planes which contain the solid angle at A be cut by another

Slane, and let the section of them by that plane be the rectilineal figure

tCDEF. And because the solid angl^ at B is contained by three pTaue

angles CBA, ABF, FBC, of which any two

are greater (20. 2. Sup) than the third, the

angles CBA, ABF are greater than the an-

gle FBC : For the same reason, the two

plane angles at each of the points C, D, E,

F, viz. the aacles which are at the bases of

this biaagles hanng the common Tcrtex A,

are greater than the third angle at the same
g>int, which is one of the anpes of the figure

CDEF : therefore all the angles at the

bases of the triangles are togeuer greater

than all the angles of the figure : and be-

cause all the angles of the triangles are to-

gether equal to twice as many right angles as there are triangles (32. 1.) >

that is, as there are sides in the figure BCDEF ; and because aU the an-

gles of the figure, together with four right angles, are likewise equal to

twice as many right angles as there are sides in the figure( I cr. 32. 1 .);there-

fore all the angles of the triangles are equal to all the angles of the rectili

neal figure, together with four right angles. But all the angles at the bases

uf the triangles are greater than all the angles of the rectilineal, as has
t>een proved. Wherefore, the remaining angles of the triangles, viz. those

at the vertex, which contain the solid angle at A, are less than four right

angles.

Otherwise.

Let the sum of all the angles at the bases of the triangles =aS ; thre

sum of all the angles of the rectilineal figure BCDEFa JT ; the sum of the

plane angles at A= X, and lot R=s a right angle.

Then, because S-|-X= twice (32. 1.) as many right angles as there ars

triangles, or as there are sides of the rectilineal figure BCDEF, and as

.7+4R is also equal to twice as many right angles as there are sides of the

same figure ; therefore S+ X= l"-f-tK. But because of the three plane

angles which contain a solid angle, any two are greater than the third,

25
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S/^ ; and therefore X/4R ; that is, the sum of the plane angles which
contain the solid angle at A is less than four right angles.

SCHOLIUM.

It is evident, that when any of the angles of the figure BCDEF h ex-
terior, like the angle at D, in the an-

nexed figure, the reasoning in the

above proposition does not hold, be-

cause the solid angles at the base

are not all contained by plane an-

gles, of which two belong to the tri-

angular planes, having their com-
mon vertex in A, and the third is an
interior angle of the rectilineal figure,

or base. Therefore, it cannot be
concluded that S is necessarily great-

er than ^. This proposition, therefore, is subject to a limitatioa, which '.a

farther explained in the notes on this Book.
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BOOK III.

OF THE COMPARISON OF SOUDS.

DEFINITIONS.

1. A Solid u that which has length, breadth, and thicknMa.

2. Similar solid figures are such as are contained by the same number ol

similar planes similarly situated, and having like inclinations to one an-

other.

3. A pyramid is a solid figure contained by planes that are constituted be*

twixt one plane and a point above it in which they meet.

4. A prism is a solid figure contained by plane figures, of which two that

are opposite are equal, similar, and parallel to one another ; and the

others are parallelograms.

5. A parallelepiped is a solid figure contained by six quadrilateral figures,

whereof every opposite two are parallel.

6. A cube is a solid figure contained by six equal squares.

7. A sphere is a solid figure described by the revolution of a semicircle

about a diameter, which remains unmoved.

8. The axis of a sphere is the fixed straight lin^ about which the semi
circle revolves.

9. The centre of a sphere is the same with that of the semicircle.

10. The diameter of a sphere is any straight line which passes through
the centre, snd is terminated both wavs by the superficies of the sphere.
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11. A cone is a solid figure described by the revolution of a right angled

triangle about one of the sides containing the right angle, which side

remains fixed.

12. The axis of a cone is the fixed straight line about which the triangle

revolves, ^

3. The base of a cone is the circle described by that side, containing th«

right angle, which revolves.

14. A cylinder is a solid figure described by the revolution of a right an-

gled parallelogram about one of its sides, which remains fixed.

15. The axis of a cylinder is the fixed straight line about which the paral-

lelogram revolves.

16. The bases of a cylinder are the circles described by the two revolving

opposite sides of the parallelogram.

17. Similar cones and cylinders are those which have their axes, and the
diameters of their bases proportionals.

PROP. L THEOR.

If two solids he contained by the same number of equal and similar planes
sin.ilarly situated, and if the inclination of any two contiguous planes in the

one solid be the same xmth the inclination of the two equal, and similarly

situated planes in the other, the solids themselves are equal and similar.

Let AG and KQ be two solids contained by the same number of equal
and similar planes, similarly situated so that the plane AC is similar and
equal to the plane KM, the plane AF to the plane KP ; BG to LQ, GD
to QN, DE to NO, and FH to PR. Let also the inclination of the plane
AF to the plane AC be the same with that of the plane KP to the plane
KM, and so of the rest ; the solid KQ is equal and similar to the solid AG.

Let the solid KQ be applied to the solid AG, so that the bases KM and

il a
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AC, which are equal and similar, may coincide (8. Ax. 1.), the point N
coinciding with the point D, K with A L with B, and so on. And be-
cause the plane KM coincides with the plane AC, and, by hypothesis, the
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Inclination of KR to KM is the same with the inclination of AH to AC,
the plane KR will be upon the plane AH, and will coincide with it, because
they are similar and equal (8. Ax. 1.), and because their equal sides KN
and AD coincide. And in the same manner it is shewn that the other

planes of the solid KQ coincide with the other planes of the solid AG,
•ach with each : wherefore the solids KQ and AG do wholly coincide,

and are equal and similar to one another.

PROP. II. THEOR.

Jf a solid be contained by stx pLmes, tte0 and two of wkieA anparaOel^ the cp^

posite plane* are similar and equal parallelograms.

Let the solid CDGH be contained by the parallel planes AC, GP ; BG,
CE ; FB, AE : its opposite nlanes are similar and equal parallelof^rams.

Because the two puallel |Hanes BG, CE, are cut by the plane AC, their

common sections Ad, CD are parallel (14. 2. Sup.). Again, because the

two parallel planes BF, AE are cut by the plane AC, their common sec-

tions AD, BC are parallel (14. 2. Sup.) : and AB is parallel to CD ; Uiere-

fore AC is a paraUelogram. In like manner, it may be proved that each
of the figures CE, FG, GB, BE, AE is a pa-

rallelogram; join AH, DP; and because AB
is parallel to DC, and UH to CF ; the two
straight lines AB, BH, which meet one an-

other, are parallel to DC and CF, which meet
one another ; wherefore, though the first two
are not in the same plane with the other two,

they contain equal angles (9. 2. Sup.) ; the

anf^e ABH is therefore equal to the angle

DCF. And because AB, BH, are equal to DC, CF, and the angle ABH
equal to the angle DCF ; therefore the base AH is eqtial (4. 1.) to the base
DF", and the triangle ABH to the triangle DCF: For the same reason,

the triangle AGH is equal to the triangle DEF : and therefore the paral-

lelogram BG is equal and similar to the parallelogram CE. In the same
manner, it may be proved, that the parallelogram AC is equal and similar

to the parallelogram GP, and the parallelogram AE to BF.

PROP. III. THEOR.

/fa solid paraUelopiped be cut by a plaru parallel to two of its opposite planes,

it will be divided into two solids, which will be to one another as the bases.

Let the solid parallelepiped ABCD be cut by the plane EV, which is

parallel to the opposite planes AR, HD, and divides the whole into the

soliils ABFV, EGCD : as the base AEFY to the base EHCF, so is the

solid ABFV to the solid EGCD.
Produce AH both ways, and take any number of straight lines HM.

MN, each equal to EH, and any number .\K, KL each equal to EA, ind
complete the parallelograms LO, KY, HQ, .MS, and the solids LP KR
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HU, MT ; then, because the straight lines LK, KA, AE are all equal, and

also the straight lines KO, AY, EF which make equal angles with LK,
KA, AE, the parallelograms LO, KY, AF are equal and similar (36. 1.

& def. L 6.) : and likewise the parallelograms KX, KB, AG ; as also

X K a I

\ \ P ^R \^:^::^N.

T

z
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(2. 3. Sup.) the parallelograms LZ, KP, AR, because they are opposite

planes. For the same reason, the parallelograms EC, HQ, MS are equal

(36. 1. & def. 1. 6.); and the parallelograms HG, HI, IN, as also (2. 3.

Sup.) HD, MU, NT ; therefore three planes of the solid LP, are equal and

similar to three planes of the solid KR, as also to three planes of the solid

AV : but the three planes opposite to these three are equal and similar to

them (2. 3. Sup.) in the several solids ; therefore the solids LP, KR, A V
are contained by equal and similar planes. And because the planes LZ,
KP, AR are parallel, and are cut by the plane XV, the inclination of LZ
to XP is equal to that of KP to PB ; or of AR to BV (15. 2. Sup.) and

the same is true of the other contiguous planes, therefore the solids LP,
KR, and AV, are equal to one another (1. 3. Sup.). For the same rea-

son, the three solids, ED, HU, MT are equal to one another ; therefore

what multiple soever the base LF is of the base AF, the same multiple is

the solid LV of the solid AV; for the same reason, whatever multiple the

base NF is of the base HF, the same multiple is the solid NV of the solid

ED : And if the base LF be equal to the base NF, the solid LV is equal

(L 3. Sup.) to the solid NV ; and if the base LF be greater than the base

NF, the solid LV is greater than the solid NV : and if less, less. Since
then there are four magnitudes, viz. the two bases AF, FH, and the two
solids AV, ED, and of the base AF and solid AV, the base LF and solid

LV are any equimultiples whatever; and of the base FH and solid ED,
the base FN and solid NV are any equimultiples whatever ; and it has
been proved, that if the base LF is greater than the base FN, the solid LV
is greater than the solid NV ; and if equal, equal ; and if less, less : There
fore (def. 5. 5.) as the base AF is to the base FH, so is the solid AV to

the solid ED.

Cor. Because the parallelogram AF is to the parallelogram FH a? YF
to FC (1 6.), therefore the solid AV is to the solid ED as YF to FC
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PROP. IV. THEOlt

(/"a solid parallelopipei be cut by a plant passing through the diagonals of

tvoo of the opposite planes, it will be aU into tvo e^uai prisms.

L«t AB be a solid parallelopiped, and DE, CF the diagonals of the op*

posite parallelograms AH, GB, viz. those which are drawn betwixt the

pqual angles in each; and because CI), FE are each of them parallel to

G A, though not in the same plane with it, CD, FE are parallel (8. 2. Sup.)

wherefore tlie diagonals OF, DE are in the plane in which the parallels

are, and are themselves parallels (14. 2. Sup.)

;

the plane CDEF cuu the solid AU into two

equal parts.

Because the triangle CGF is equal (34. 1.)

to the triangle CBF, and the triangle DAE to

DUE : and since the parallelogram CA is eqnal

(2. 3. Sup.) and similar to the opposite one BE ;

and the |»araUelogram GE to Cil : therefore the

planes wliich contain the prisms CAE, CBE,
are equal and similar, each to e^ch ; and they

are alxo equally inclined to one another, because

the pUnos AC, EB are parallel, as aUo AF and

BD, and they are cut by the plane CE (1 5. 2. Sup.). Therefore the pnsm
CAE is equal to the pnsm CBE (1. 3. Sup.), and the solid A B is cut into

two equal prisms by the plsne CDEF.
N. B. I'he insisting straight lines of* a parallelopiped, mentioned in

the following propositions, are the sides of the parallelograms betwixt tht

base and the plane parallel to it.

PROP. V. THEOR.

Solid pnralMopipeds upon the same base, and of the same altitude, the ts

suttng straight lines of whtch are terminated in the same straight lines in

the plane ojtponte to the base are equal to one another.

Let the solid parallolopipcds AH, AK be upon the same base .\B, and

of the sumo altitude, and let their insisting straight lines AF, AG, L.M, LN
he lertninaled in the same straight line FN, and let the insisting liiiea CD
CE, nil, UK be terminated in the same straight line DK ; the solid AH
is e<|ual to the solid AK.

Because CH, CK are parallelograms, CB is equal (34. 1.) to each of*

the o|>|M)8ito bides DH, EK : wherefore 1)11 is equal to EK : adil, or take

away the common part HE ; then DE is equal to HK : Wherefore alcto

the triringlo CDE is equal (38. 1.) to the triangle BHK : and the p.irallel-

oifrum I)CJ is equal (36. 1.) to the parallelogram HN. For tlie same rea-

bon, the tri-inglo AFG is equal to the triangle LMN, and the parallelogram

CF is equal (2. 3. Sup.) to the parallelogram B.M, and CG to HN ; for

they are opposite. Therefore the planes which contain the prism DAG
are similar and equal to tho&e which contain the prism IILN, each to each '
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and the contiguous planes are also equally inclined to one another (15. 2.

Sup ), because that the parallel planes AD and LH, as also AE and LK

>N
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/ /

4
/

\/ \/
IJ

are cut by the same piane DN : therefore the prisms DAG, HLN are

equal (1. 3. Sup.). If therefore the prism LNH be taken from the solid,

of which the base is the parallelogram AB, and FDKN the plane opposite

to the base ; and if from this same solid there be taken the prism AGD,
the remaining solid, viz. the parallelopiped AH is equal to the remaining

parallelopiped AK.

PROP. VI. THEOR.

Solid parallelopipeds upon the same base, and of tne same altitude, the in-

sisting straight lines of which are not terminated in the same straight lines

in the plane opposite to the base, are equal to one another.

Let the parallelopipeds CM, CN, be upon the same base AB, and of the

same altitude, but their insisting straight lines AF, AG, LM, LN, CD,
CE, BH, BK, not terminated in tlie same straight lines ; the solids CM,
CN are equal to one another.

Produce FD, MH, and NG, KE, and let them meet one another in the

pQJn 8 0, P, Q, R ; and join AO, LP, BQ, CR. Because the planes (def.

5. 3. Sup.), LBHM and ACDF are parallel, and because the plane LBHM
is that in which are the parallels LB, MHPQ (def. 5. 3. Sup.), and in which
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also ii the figure BLPQ ; and because the plane ACDF is that in which
are the parallels AC, FDOR, and in which also is the figure CAOR

;

therefore the figures BLPQ, CAOR, are in parallel planes. In like man-
ner, because the planes ALNG and CBKE are parallel, and the plane

ALNG is that in which are the parallels AL, OPGN, and in which also

is the figure ALPO ; and the plane CBKE is that in which are the paral-

lels CB, RQEK, and in which also is the figure CBQR ; therefore the

figures ALPO, CBQR, are in parallel planes. But the planes ACBL.
ORQP are also parallel ; therefore the solid CP is a parallflopipod. Now
the soUd paimllelopiped CM is equal (5. 2. Sup.) to the solid paraJlelopiped

CP, because thevare upon the same base, and their insisting straight lines

AF, AO, CD, CR ; LM, LP, BH, BQ are terminated in the same straight

lines FR, MP ; and the solid CP is equal (5. 2. Sup.) to the solid CN ;

for they are upon the same base ACHIi, and their insisting straight lines

AO. AG, LP, LN : CR, CE, BQ. BK are terminated in the same straight

lines ON, RK ; Therefore the solid CM is equal to the solid CN.

PROP. Vll. THEOR.

Solid paralUIopipgds, vkiek are upon equal bases, mnd of thf swm$ mUitmdt,

are equal to one another.

Let the solid parallelopipeds, AE, CF, be upon equal bases AB, CD,
and be of the same altitude ; the solid AE is equal to the solid CF.

Case 1 . Let the insisting straight lines be at right angles to the baaes

AB. CD, and let the bases be placed in the same plane, and so as that the

sides CL, LB, be in a straight line; therefore the straight line LM, which
IS at right angles to the plane in which the bases are, in the point L, in

common (11. 2. Sup.) to the two solids AE, CF ; let the other insisting

lines of the solids be AG. HK. BE ; DF, OP, CN : and first, let the angle

ALB be equal to the angle CLD ; then AL, LD are in a straightline(14.

1.). Produce OD, HB, and let them meet in Q and complete the solid

parallclopiped LR, the base of which is the parallelogram LQ, and of

which LM is one of its insisting straight lines : therefore, because the pa-

rallelogram AB is equal to CD, as the base AB is to the base LQ. so is

(7. 6.) the base CD to the same LQ : and because the solid parallelopiped

AR is cut by the plane LMEB, which is parallel to the opposite planes

AK. DR ; as the base AB is to the base LQ, so is (3. 3. Sup.) the solid



202 . SUPPLEMENT TO THE ELEMENTS

AE to the solid LR : for the same reason because the solid parallelopiped

CR is cut by the plane LMFD, which is parallel to the opposite planes

CP, BR ; as the base CD to the base LQ ; so is the solid CF to the solid

LR , but as the base AB to the base LQ, so the base CD to the base LQ.
as has been proved : therefore as the solid AE to the solid LR, so is the

solid CF to the solid LR ; and therefore the solid AE is equal (9. 5.) to

the solid CF.
But let the solid parallelepipeds, SE, CF be upon equal bases SB, CD,

and be of the same altitude, and let their insisting straight lines be at right

angles to the bases ; and place the bases SB, CD in the same plane, so

that CL, LB be in a straight line ; and let the angles SLB, CLD, be un-

equal ; the solid SE is also in this case equal to the solid CF. Produce
DL, TS until they meet in A, and from B draw BH parallel to DA ; and
let HB, OD produced meet in Q, and complete the solids AE, LR : there-

fore the solid AE, of which the base is the parallelogram LE, and AK the

plane opposite to it, is equal (5. 3. Sup.) to the solid SE, of which the base
is LE, and SX the plane opposite ; for they are upon the same base LE,
and of the same altitude, and their insisting straight lines, viz. LA, LS,
BH, BT ; MG, MU, EK, EX, are in the same straight lines AT, GX

:

and because the parallelogram AB is equal (35. L) to SB, for they are

upon the same base LB, and between the same pardlels LB, AT ; and
because the base SB is equal to the base CD ; therefore the base AB is

equal to the base CD : but the angle ALB is equal to the angle CLD

:

therefore, by the first case, the solid AE is equal to the solid CF ; but the
solid AE is equal to the solid SE, as was demonstrated : therefore the

solid SE is equal to the solid CF.
Case 2. If the insisting straight lines AG, HK, BE.LM ; CN, RS,

DF, OP, be not at right angles to the bases AB, CD ; in this case likewise
the solid AE is equal to the solid CF. Because solid parallelopipeds on
the same base, and of the same altitude, are equal (6. 3. Sup.), if two solid
parallelopipeds be constituted on the bases AB and CD of the same alti-

tude with the solids AE and CF, and with their insisting lines perpendicu-
lar to their basei, they will be equal to the solids AE and CF ; and, by the
first case of this proposition, ihey will be equal to one another ; wherefore,
the solids AE and CF are also equal.
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PROP. VIII. THEOR.

Solid parallelopipeds which have tha samt altitude^ ar0 U tm* another as thetr

bases.

l^t AB, CO b« solid panllelopipeds of the same altitude ; they are to

one another aa their basea ; that ta, as the base A£ to the base CF, so is

the vuiiJ AB to the solid CO. .

To the utraighi line FG apply the parallelogram FH equal (C<ir. Prop.

45. l.)to AE.so that the angle FGH be equal to the angle LCG; and

complete tha solid parallolopiped GK upon the base FH.one of whose in

sistiiig lines ia FD, whereliy the boIuIh CD, GK must be of the same alti-

tude. Therefore the solid AB is equal (7. 3. Sup.) to the solid GK, be-

cause they are upon equal bases AE, FH, and are of the aame altitude :

and because the solid paraHelopiped CK is cut by the plane DG which is

parallel to its opposite planee, tne base HF is (3. 3. Sup.) to tlie base FC,
as tlio solid HD to the solid DC : But the base HF is equal to the base

AE, and tlie solid GK to the solid AB : therefore, ss the base AE to the

base CF, so is the solid AB to ilie sohd CD.

CoR. 1 . From this it is manifest, that prisms upon triangular bases, and
of the same altitude, are to one another as their bases. Let the prisms

BNM, Di'G, the bases of which arc the uiangles AEM, CFG, have the

same altitude : complete the parallelograms AK, CF, and the solid paral

lclopi|K;i!8 AB, CD, in the first of which let AN, and in the other let CP
be one of the insisting lines. And because the solid parallelopipeds AB,
CD li:ivu the same altitude, they are to one another as tlie base A K is to

the ha.so CF ; wherefore the prisms, wliicb are their halves (4. 3. Sup.)

are to one another, as the base AE to the base CF ; that is, as the trian-

gle AEM to the triangle CFG.
Cor. 2. Also a prism and a parallelepiped, which hare the same alii-

' tude, are to one another aa their bases ; that is, the prism BNM is to th«

paraltelopi(>ed CD as the triangle AE.Vl to the parallelogram I.G. l^r
by the last Cor. the prism BN.M is to the prism DPG as the triangle A.MK
to tlie triangle CGF\ ami therefore the prism BN.M ts to twice the prism

DPG as Uie triangle A.ME to twice the triangle CGF(4. 5.) ; thai is. the

prism BNM is to Uie paraHelopiped CD as the triangle A.ME to the paruW
lelogr.un LG.
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PROP. IX. THEOR.

Solid parallelopipeds are to one another in the ratio that is compounded ofth*

ratios of the areas of their bases, and of their altitudes.

Let AF and GO be two solid parallelopipeds, of which the bases are the

parallelograms AC and GK, and the altitudes, the perpendiculars let fall

on the planes of these bases from any point in the opposite planes EF and

MO ; the solid AF is to the solid GO in a ratio compounded of the ratios

of the base AC to the base GK, and of the perpendicular on AC, to the

perpendicular on GK.
Case 1. When the insisting lines are perpendicular to the bases AC

and GK, or when the solids are upright.

In GM, one of the insisting lines of the solid GO, take GQ equal to AE,

one of the insisting lines of the solid AF, and through Q let a plane pass

parallel to the plane GK, meeting the other insisting lines of the solid GO

F
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m the points R, S and T. It is evident that GS is a solid parallelopiped

(def. 5. 3. Sup.) and that it has the same altitude with AF, viz. GQ or

AE. Now the solid AF is to the solid GO in a ratio compounded of the

ratios of the solid AF to the solid GS (def. 10. 5.), and of the solid GS to

the solid GO ; but the ratio of the solid AF to the solid GS, is the same
with that of the base AC to the base GK (8. 3. Sup.), because their alti-

tudes AE and GQ are equal ; and the ratio of the solid GS to the solid

GO, is the same with that of GQ to GM (3. 2. Sup.) ; therefore, the ratio

which is compounded of the ratios of the solid AF to the solid GS, and of

the solid GSto the solid GO, is the same with the ratio which is compound-
ed of the ratios of the base AC to the base GK, and of the altitude AE to

the altitude GM (F. 5.). Bui the ratio of the solid AF to the solid GO, is

that which is compounded of the ratios of AF to GS, and of GS to GO ;

therefore, the ratio of the solid AF to the solid GO is compounded of the

ratios of the base AC to the base GK, and of the altitude AE to the alti-

tude GM.
Case 2. When the insisting lines are not perpendicular to the bases.
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Let the parallelograms AC and GK be the bases as before, and let AE
mad GM be the altitudes of two parallelopipeda Y and Z on these bases.

Then, if the upright parallelopipeds Ar and GO be constituted on the

bases AC and GK, with the altitudes AE and GM, they will be equal to

the parallelopipeds Y and Z (7. 3. Sup.). Now, the solids AF and GO,
by the first case, are in the ratio compounded of Uie ratioa of the bases AC
and GK, and of the altitudes .\E and GM ; therefore also the solids Y
and Z have to one another a ratio that is compounded of the same ratios.

Cor. 1. Hence, two straight lines may be found having the same ratio

with the two parallelopipeds AF and GO. To AB, one of the sides of the

parallelogram AC, apply the parallelogram BY equal to GK, having an

angle equal to the angle BAD (Prup. 44. 1.); and • AE to GM, so let

A V be to AX (12. 6.), then AD is to AX as the solid AF to the solid GO.
For the ratio of AD to AX is compounded of the ratios (dtf. 10. 5.) of AD
to AY, and of AY to AX ; but the ratio of AD to AY is the same with

that of the parallelogram AC to the parallelogram BY (1. 6.) or GK ;

and the ratio of AY to AX is the same with that of AE to GM ; therefore

the ratio of AD to AX is compounded of the ratios of AC to GK, and of

AE to GM (E. 5.). But the ratio of the soUd AF to the solid GO is com-
poimded of the same ratios ; therefore, as AD to AX, so is the solid AF to

the solid GO. •
Cor. 2. If AF and GO are two parallelopipeds, and if to AB, to the

perpendicular from A upon DC, and to the altitude of the parallelopiped

AF, the numbers L, M, N, be proportional : and if to AB, to GH, to the

perpendicular from G on LK, and to the altitude of the parallelopiped GO,
the numbers L, /, m, », be proportional ; the solid AF is to the solid GO
as LxMxN to IxmXm.

For it may be proved, as in the 7ih of the 1st of the Sup. that L X M X
Nisto/XmXnin the ratio coropotmded of the ratio of LX M to / x m, and
of the ratio of N to ». Now the ratio of L x .M to / x m is that of the area

of the parallelogram AC to that of the parallelogram GK ; and the ratio

of N to n is the ratio of the altitudes of the parallelopipeds, by hypothesis,

therefore, the ratio ofLxMxNto/XmXnis compounded of the ratio of

the areas of the bases, and of the ratio of the altitudes of the parallelopipeds

AF and GO ; and the ratio of the parallelopipeds themselves is shewn, in

this proposition, to be compounded of the same ratios ; therefore it is the

same with that of the product L X M x N to the product /x m x n.

CoR. 3. Hence all prisms are to one another in the ratio compounded
of the ratios of their bases, and of their altitudes. For every prism is

equal to a parallelopiped of the same altitude with it, and of an equal base

(2. Cor. 8. 3. Sup.).

PROP. X. THEOR.

Solid paralUlopipeds, tckich have their bases and altitudes reciprocally propor-

tional^ art equal ; and parallelopipeds which are equal, have thrir bases and
altitudes reciprocally proportional.

Let AG and KQ be two solid parallelopipeds, of which the bases are
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AC and KM, and the altitudes AE and KO, and let AC be to KM as KO
to AE ; the solids AG and KQ are equal.

As the base AC to the base KM, so let the straight line KO be to the

straight line S. Then, since AC is to KM as KO to S, and also by hypo-

thes-is, AC to KM as KO to AE, KO has the same ratio to S that it has

to AE (1 ] . 5.) ; wherefore AF is equal to S (9. 5.). But the solid AG is

to the solid KQ, in the ratio compounded of the ratios of AE to KO, and

of AC to KM (9. 3. Sup.), that is, in the ratio compounded of the ratios of

AE to KO, and of KO to S. And the ratio of AE to ^ is also compound-
ed of the same ratios (def. 10. 5.) ; therefore, the solid AG has to the solid

KQ the same ratio that AE has to S. But AE was proved to be equal to

S, therefore AG is equal to KQ.
Again, if the solids AG and KQ be equal, the base AC is to the base

KM as the altitude KO to the altitude AE. Take S, so that AC may be

to KM as KO to S, audit will be shewn, as was done above, that the solid

AG is to the solid KQ as AE to S ; now, the solid AG is, by hypothesis,

equal to the solid KQ : therefore, AE is equal to S ; but, by construction,

AC is to KM, as KO is to S ; therefore, AC is to KM as KO to AE.

CoR. In the same manner, it may be demonstrated, that equal prisms

have their bases and altitudes reciprocally proportional, and conversely.

PROP. XL THEOR.

Similar solid parallelopipeds are to one another in the triplicate ratio of their

homologous sides.

Let AG, KQ be two similar parallelopipeds, of which AB and KL are

two homologous sides ; the ratio of the solid AG to the solid KQ is tripli-

cate of the ratio of AB to KL.
^
Because the solids are similar, the parallelograms AF, KP are similar

(def. 2. 3. Sup.), as also the parallelograms AH, KR ; therefore, the ratios

of AB to KL, of AE to KO, and of AD to KN are all equal (def. 1. 6.).

But the ratio of the solid AG to the solid KQ is compounded of the ratios

o^ AC 10 KM, and of AE to KO. Now, the ratio of AC to KM, because
tney are equiangular parallelograms, is compounded (23. 6.) of the ratios

of AB to KL, and of AD to KN. Wherefore, the ratio of AG to KQ is
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compounded or the three ntioe of AB to KL, AD to KN, and AE to KO
and iho three ratios hare already been proved to be equal ; therefore, the

ratio that is compounded of them, viz. the ratio of the solid AG to the solid

KQ, is triplicate of any of tliem (def. 12. 5.): it is therefore triplicate oi

the ratio of AB to KL.

CoK. 1. ITu ABtoKL, eoKLto iii,and asKLtoiRtSoisiiitoii, then

AB is to M as the aolid AG to the solid KQ. For the ratio of AB to n u
triplicate of the ratio of AB to KL (def. 12. 5.), and is therefore equal to

that of the solid AG to the solid KQ.
Cor. 2. As cubes are similar solids, therefore the cube on AB is to the

cube on KL in the triplicate ratio of AB to KL, that is in the same ratio

with (he solid AG, to the solid KQ. Similar solid parallelopipeds are there-

fore to one another as the cubes on their homologoua sides.

CoK. 3. In thf same manoer it is proved, that similar prisms are to one
another in the triplicate ratio, or in the ratio of the cubes of their hoinolo>

gous sides.

PROP. XIL THEOR.

Iftwoirimtguimrmyrmmiit,wkich have equal losesand altitudss, he cut by pUuu*
that mrmparaJUl to tio baotSt omd at equal dutanecifrom them, ike seetiomj

are equal to one anotkor.

\joi ABCDaod EFGH be two p>Tamids, having equal bases BDC and
FGII, and equal altitudes, viz. the perpendiculars AQ, and ES drawn from
A and E upon the planes BDC and FGH : and let them be cut by planes

parallel to BDC and FGH, and at e^^ual altitudes QR atMl ST above those

planes, and let the sections be the triangles KL.Nf, NOP ; KL.M and NOP
are equal to one another.

Because the plane ABD cuts the parallel planes BDC, KI<M, the com-
mon sections B D and KM are parallel (14. 2. Sup.). For the same rea

son. DC and ML are parallel. Since therefore K.M and ML are parallel

to BD and DC, each to each, though not in the same plane wiiii them, the

angle KLM is equal to the angle BDC (9. 2. Sup.). In like manner the

other angles of these triangles are proved to be equal ; therefore, the trian*

gies are equiangular, and consequently similar ; and the vame is true of the

triangles NOP, FGH.
Now, since the straight lines ARQ, AKB mert the parallel planes BDC
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and KML, they are cut by them proportionally (16. 2. Sup.), or QR : RA
: : BK : KA ; and AQ : AR : : AB : AK (18. 5.), for the same reason,

ES : ET : : EF : EN ; therefore AB : AK : : EF : EN, because AQ is

equal to ES, and AR to ET. Again, because the triangles ABC, AKL
are similar,

AB : AK : : BC : KL ; and for the same reason

EF : EN : : FG : NO ; therefore,

BC : KL : : FG : NO. And, when four straight lines are propor-

tionals, the similar figures described on them are proportionals (22. 6.)

;

therefore the triangle BCD is to the triangle KLM as the triangle FGFI
to the triangle NOP ; but the triangle BDC, FGH are equal ; therefore,

the triangle KLM is also equal to the triangle NOP (1. 5.).

Cor. 1. Because it has been shewn that the triangle KLM is similar

to the base BCD ; therefore, any section of a triangular pyramid parallel

to the base, is a triangle similar to the base. And in the same manner it is

shewn, that the sections parallel to the base of a polygonal pyramid are

similar to the base.

Cor. 2. Hence also, in polygonal pyramids of equal bases and altitudes,

the sections parallel to the bases, and at equal distances from them, are

equal to one another.

PROP. Xni. THEOR.

A scries cfprisms ofthe same altitude may be circumscribed about any pyramid,
such that the sum ofthe prisms shall exceed the pyramid by a solid less than

any given solid.

Let ABCD be a pyramid, and Z* a given solid ; a series of prisms hav-

ing all the same altitude, may be circumscribed about the pyramid ABCD,
so thai their sum shall exceed ABCD, by a solid less than Z.

* The solid Z is not represented in the figure of this, or the following Proposition
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Let Z b« equal to a prism standing on the same base with the pyramid.

riz. the triangle BCD, and haring for its aititode the perpeudicuJar drawr.

from a certain point £ in the line AC
upon the plane BCD. It is evident, that

CE multiplied bjr a certain nimiber m
will be greater than AC ; divide CA into

as many equal puts as there are units in

at, and let th^se be CF, FG, GH, HA.
each of which will be less than CE.
Through each of the points F, G, H, let

planes be made to pass parallel to the

plane BCD, making with the sides of the

pyramid the secUons FPQ, GRS, IITU,
which will be all similar to one another,

and to the base BCD (1. cor. 12. 3. Sup.).

From the point B draw in the piano of

the triangle ABC, the sttaight line BK
Jtarallel to CF meeting FP produced m
C. In like manner, from D draw DLpa>
rallel to CF, meeting FQ in L : Join KU
and it is plain, that the solid KBCDLF
is a prism (def. 4. 3. Sup.). By the sshie

construction, let the prisms PM, RO,TV
be described. Also, let the straight line I P, which is in the plane of the

triangle ABC, be produced till it meet BC in h ; and let the line MQ b«

produced till it meet DC in g : Join hg ; then h(> gQFP is a prism, and is

equal to the prism P.M ( 1 . Cor. 8. 3. Sup.). In the same manner is dcftcrib*

ed the prism mS equal to the pri«ni ilO, and the pnnmqlJ equal to the

prism TV. The sum, therefore, uf all the invchbed priiimii hQ, mS, and
qll is equal to the sum ufthe prisms PM, HO and TV, that is, to the sum
of all ihe circumscribed prisma except the prism HL ; wherefore, BL is the

excess of the prism circumscribed about tho pyramid .\BClJ nlwve th«»

prisms inscribed within it. Bat the prism Hh is less than the prism which
has tho triant;lo BCD for its base, and for its altitude the perpendicular

from E upon the plane BCD; and the prism which has ftCDfor its ba.se,

and tho perpendicular from E for its altitude, is by h\'pothesis equal to the

given solid Z ; therefore the excess of the cin-umscribed, above the in»cril»-

nd prisms, is less than the given solid /. But the excess of the circum-

scribed prisms above the inscribed is greater than their excess above the

pyramid ABCD, because ABCD is greater than the sum of the inscribed

prisms. Much more, therefore, is tho excess of the circumscribed prisms

above the pyramid, less than the solid Z. A series of prisms of the same
altitude has therefore been circumscribed alK>ui the pyramid .\BCD. ex

eeeding it by a solid less than the given solid Z.

PROP XIV. THEOR

Pyramids that have equal basra and altUud^x are e<ptal to one another

\Aii .\BCD, EFGH, be two pyramids that have equal bases BCD. FGH
' 27
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and also equal altitudes, viz. the perpendiculars drawn from the vertices A
and E upon the planes BCD, FGH : the pyramid ABCD is equal to the

pyramid EFGH.
Ifthey are not equal, let the pyramid EFGH exceed the pyramid ABCl)

by the solid Z. Then, a series of prisms of the same altitude may be de

scribed about the pyramid ABCD that shall exceed it, by a solid less than

Z (13. 3. Sup.) ; let these be the prisms that have for their bases the trian-

gles BCD, NQL, ORI, PSM. Divide EH into the same immber of equal

parts into which AD is divided, viz. HT, TU, UV, VE, and through the

points T, U and V,let the sections TZW, U^X, V*Ybe made parallel

to the base FGH. The section NQL is equal to the section WZT (12.

3. Sup.) ; as also ORI to X.;U, and PSM to Y'l'Y ; and therefore also the

prisms that stand upon the equal sections are equal (1. Cor. 8, 3. Sup.),

that is, the prism which stands on the base BCD, and which is between
the planes BCD and NQL, is equal to the prism which stands on the base

FGH, and which is between the planes FGH and WZT ; and so of the

rest, because they have the same altitude : wherefore, the sum of all the

prisms described about the pyramid ABCD is equal to the sum of all those

described about the pyramid EFGH. But the excess of the prisms de-

scribed about the pyramid ABCD above the pyramid ABCD is less than

Z(13. 3. Sup.); and therefore, the excess of the prism described about

the pyramid EFGH above the pyramid ABCD is also less than Z. But
the excess of the pyramid EFGH above the pyramid ABCD is equal to

Z, by hypothesis, therefore, the pyramid EFGH exceeds the pyramid
ABCD, more than the prisms described about EFGH exceeds the same
pyramid ABCD. The pyramid EFGH is therefore greater than the sum
of the prisms described about it, which is impossible. The pyramids
ABCD, EFGH therefore, are not unequal, that is, they are equal to one
another.
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PROP. XV. THEOR.

Every prism hamng a triamgmlmr boMmay be divided into tnree pyramids that

have triangular bases^ mud that are equal to another.

Let there be a prism of which the hue ia the triangle ABC, and I«l

DEF be the triangle oppoaite the base : The prism ABCDEF may h%

divided into three equal p3rramids haring triangular bases.

Join AE, EC, CO ; and because ABED is a parallelogram, of which
AE is the diameter, the triangle ADE is equal

(34. 1.) to the triangle ABE : therefore the py-
ramid of which the base is the triangle ADE,
and venex the point C.is equal (14. 3. Sup.) to

the pyramid, ol which the base is the triangle

ABE, and vertex the point C. But the pyra«

mid of which the base is the triangle ABE, and
vertex the point C, that is, the pyramid ABCE
is equal to the pyramid DEFC (14 3. Sup.),

for they have equal bases, viz. the triangles

ABC, DEF, and the same altitude, viz. the al-

titude of the prism ABCDEF. Therefore the

three pyramids ADEC, ABEC. DFEC are

equal to one another. But the pyramids ADEC,
ABEC, DFEC make up the whole prism

ABCDEF ; therefore, the prism ABCDEF is

divided into three equal p3rTamids.

CoR. 1. From this it is manifest, that every pjTsroid is the third part

of a prism which haa the same base, and the same altitude with it ; for if

the base of the prism be any other figure than a triangle, it may be divided

into prisms having triangular bases.

Cor. 2. Pyramids of equal altitudes are to one another as their bases
;

because the prisms upon the same bases, and of the same altitude, are (1.

Cor. 8. 3. Sup.) to one another as their bases.

PROP. XVI. THEOR.

Iffrom any point in the cireumfrrmce of the base of a eyhnder, a straight

Une be drawn perpendicular to the plane of the base, it veill be wholly in the

cyltndric superficies.

Let ABCD be a cylinder of which the base is the circle AEB, DFC
the circle opposite to the base, and Gil the axis ; from E, any point in the

circumference AEB, let EF be drawn perpendicular to the plane of ilis

circle AEB : the straight line EF is in the superficies of the cylimlcr.

Let F be the point in which EF meets the plane DFC oppositf lo ttie

base; join EG and FH ; and let AGHD be the rectan<,'l« (It. tl..'l. X
Sup.) by the revolution of which the cylinder ABCD i» describ<d



112 SUPPLEMENT TO THE ELEMENTS

Now, because GH is at right angles to GA,

the straight line, which by its revolution des-

cribes the circle AEB, it is at right angles to

all the straight lines in the plane of that circle

which meet it in G, and it is therefore at right

angles to the plane of the circle AEB. But

EF is at right angles to the same plane ; there-

fore, EF and GH are parallel (6. 2. Sup.) and

in the same plane. And since the plane through

GH and EF cuts the parallel planes AEB,
DFC, in the straight lines EG and FH, EG is

parallel to FH (14. 2. Sup.). The figure

EGHF is therefore a parallelogram, and it has

the angle EGH a right angle, therefore it is a

rectangle, and is equal to the rectangle AH,
because EG is equal to 'AG. Therefore, when
in the revolution of the rectangle AH, the straight line AG coincides with

EG, the two rectangles AH and EH will coincide, and the straight line

AD will coincide with the straight line EF. But AD is always in the

superficies of the cylinder, for it describes that superficies ; therefore, EF
is also in the superficies of the cylinder.

PROP. XVH. THEOR.

A cylinder and a parallelopiped having equal bases and altitudes, are equal to

one another.

Let ABCD be a cylinder, and EF a parallelopiped having equal bases,

viz. the circle AGB and the parallelogram EH, and having also equal al-

titudes ; the cylinder ABCD is equal to the parallelopiped EF.

If not, let ihem be unequal ; and first, let the cylinder be less than tho

parallelopiped EF • and from the parallelopiped EF let there be cut off a
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fmn EQ by a plane PQ parallel to NF, equal to the cylinder ABCD. In
the circle AGB inscribe the polygon AGKBLM that shall difler from the

circle by a space less than the parallelogram PH (Cor. 1.4. 1. Sup.), and
4tut off from the parallelogram EH, a part OR equal to the polygon
AGKBL.M. The point R will fall between P and N. On the polygon

AGKBLM let an upright prism AGBCD bo constituted of the same alu>

tude with the cylinder, which will therefore be lets than the cylinder, be-

cause it is within it (16. 3. Snp.) ; and if through the point R a plane RS
parallel to NF be made to pass, it will cut off* the parallelepiped ES equal

(2. Cor. 8. 3. Sup.) to the prism AGBC, because ita base is equal to that

of the prism, and its altitude is the same. Bat the prism AGBC is lees

than the cylinder ABCD, and the cylinder ABCD is equal to the parallel-

opiped EQ, by hypothesis ; therefore, ES is less than EQ, and it is also

gTMler, which is impossible. The cylinder ABCD, therefore, is not less

Uisn the parallelopiped EF; and in the same manner, it may be shewn
ROC to be greater than EF.

PROP. XVIII. THEOR.

Ifaeotu and cylinder have tMe tam§ hate and the $mm$ tititmiOf tktatmati tka

third part of tke cylinder,

I/et the cone ABCD, and the cylinder BFKG hare the aame base, vis.

die circle BCD, and the same altitude, riz. the perpendicular from the

point A upon the plane BCD, the cone ABCD is the third part of the cylin-

der BFKO.
If not, let the cone ABCD be the third part of another cylinder LMNO,

havinff the same altitude with the cylinder BFKG, but let the bases BCD
•Dd LIM be unequal ; and first, let BCD be greater than LIM

Then, because the circle BCD is greater than the circle LINf , a polygon

may be inscribed in BCD, that shall diflfcr from it less tlun Ll.Vf does (4.

1. Sup.), and which, therefore, will be greater than LIM. Let tliis be the

polygon BCCFD; and upon BCCFD, let there be constituted the pyra

mid ABECFD, and the prism BCFKHG.
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Becaus3 the polygon BECFD is greater than the circle LIM, the prism

BCFKHG is greater than the cylinder LMNO, for they have the same
altitude, hut the prism has the greater base. But the pyramid ABECFD
is the third part of the prism (15. 3. Sup.) BCFKHG, therefore it is great-

er than the third part of the cylinder LMNO. Now, the cone ABECFD
is, by hypothesis, the third part of the cylinder LMNO, therefore the pyra-

mid ABECFD is greater than the cone ABCD, and it is also less, because

it is inscribed in the cone, which is impossible. Therefore, the cone ABCD
is not less than the third part of the cylinder BFKG : And in the same
manner, by circumscribing a polygon about the circle BCD, it may be

shewn that the cone ABCD is not greater than the third part of the cylin-

der BFKG ; therefore, it is equal to the third part of that cylinder

PROP. XIX. THEOR.

Jfa hemisphere and a cone have equal bases and altitudes, a series of cylinders

mmj he inscribed in the hemisphere, and another seriesmay be described about

the cone, having all the same altitudes with one another, and such that their

sum shall differ from the sum of the hemisphere, and the cone, by a solid

less than any given solid.

Let ADB be a semicircle of which the centre is C, and let CD be at right

angles to AB ; let DB and DA be squares described on DC, draw CE,
and let the figure thus constructed revolve about DC : then, the sector

BCD, which is the half of the semicircle ADB, vi^ill describe a hemisphere
having C for its centre (7 def. 3. Sup.), and the triangle CDE will describe

a cone, having its vertex to C, and having for its base the circle (11. def.

3. Sup.) described by DE, equal to that described by BC, which is the base

of the hemisphere. LetW be any given solid. A scries of cylinders may
be inscribed in the hemisphere ADB, and another described about the cone

ECI, so that their sum shall differ from the sum of the hemisphere and
the cone, by a solid less than the solid W.
Upon the base of the hemisphere let a cylinder be constituted equal to

W, and let its altitude be CX. Divide CD into such a number of equal

parts, that each of them shall be less than CX ; let these be CH, HG, GF,
and FD. Through the points F, G, H, draw FN, GO, HP parallel to

CB, meeting the circle in the points K, L and M ; and the straight line

CE in the points Q, R and S. From the points K, L, M draw Kf, Lg,
Mh, perpendicular to GO, HP and CB ; and from Q, R, and S, draw Qq,
Rr, Ss, perpendicular to the same lines. It is evident, that the figure being
thus constructed, if the whole revolve about CD, the rectangles Ff, Gg, Hh
will describe cylinders (14. def. 3. Sup.) that will be circumscribed by the

hemispheres BDA ; and the rectangles DN, Fq, Gr, Hs, will also describe

cylinders that will circumscribe the cone ICE. Now, it may be demon-
strated, as was done of the prisms inscribed in a pyramid (13. 3. Sup.),

that the sum of all the cylinders described within the hemisphere, is ex-

ceeded by the hemisphere by a solid less than the cylinder generated by
the rectangle HB, that is, by a solid less than W, for the cylinder generated

by HB is less than W. In the same manner, it may be demonstrated
that the sum of the cylinders circumscribing the cone ICE is greater than
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the con« by a solid less than the cylinder generated by the rectangle DN
that is, by a solid less than W. Therefore, since the sum of the cylinders

inscribed in the hentisphcro, together with a solid less than W, is equal to

the homisphero ; and, since the Kum of the cylinders described about the

cone is equal to the cone together with a solid less than W ; adding equals

to equals, the sum of all these cylinders, together with a solid less than W,
is equal to the sum of the hemisphere and the cone together with a solid

less than W. Therefore, the difTercnce between the whole of the cylin-

ders and the sum of the hemisphere and the cone, is equal to the diflTerence

of two solids, which are each of them less than W ; but this diflereoce

must also be lew than W, therefore the diflTerence between the two series

of cylinders and the stun of the hemisphere and cone is less than the given

solid W.

PROP. XX. THEOR.

The tame things bring supposed as in the last proposition, the sum of all tka

cylinders inscribed in the hemisnhrre, and described about the cone, is equal

to a cyluider, having the same base and altitude neitk the hemisphere.

Let the figure BCD be constructed as before, and supposed to revolve

About CD ; the cylinders inscribed in the hemisphere, tliat is, the cylinders

described by the revolution of the rectangles Ilh, Gg, Ff, together with

those described about the cone, that is, the cylinders dencribed by the revo-

lution of the rectangles lis, Gr, Fq, and DN are equal to the cylinder de
scribed by the revolution of the rectangle UD.

I^t L be the point in which GO meets the circle AIJD. then, because

CGI. is a right angle if CL be joined, the circles described with the dis-

tances CG and GL are equal to the circle described with the distance CL
(2. Cir. 6. 1 Sup.) or GO; now, CG is equal to GR, because CI) is equal

to DC, and therefore also, the circles described with the dintance GR and

GL are together equal to the circle described with the distance GO, that

is, the circles described by the revolution of GR and (>L about the point

G, are together equid to the circle described by the revoluiiofi of GO about

the same point G ; therefore also, the cylinders that stand ii}x)n the two
drst of these circles, having the common altitudes Gil, are equal to the
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cylinder wlxich stands on the remaining circle, and which has the same

altitude GH, The cylinders described by the revolution of the rectangles

Gg, and Gr are therefore equal to the cylinder described by the rectangle

GP. And as the same may be shewn of all the rest, therefore the cylin-

ders described by the rectangles Hh, Gg, Ff, and by the rectangles Hs, Gr,

Fq, DN, are together equal to the cylinder described by BD, that is, to the

cylinder having the same base and altitude with the hemisphere.

PROP. XXL THEOR.

Every sphere is two-thirds of the circumscribing cylindei.

Let the figure be constructed as in the two last propositions, and if the

hemisphere described by BDC be not equal to two-thirds of the cylinder

described by BD, let it be greater by the solid W. Then, as the cone de-

scribed by CDE is one-third of the cylinder (18. 3. Sup.) described by BD,

the cone and the hemisphere together will exceed the cylinder by W. But

that cylinder is equal to the sum of all the cylinders described bv the rect-

angles Hh, Gg, Ff, Hs, Gr, Fq, DN (20. 3. Sup.) ; therefore the hemisphere
n.rid the cone added together exceed the sum of all these cylinders by the

given solid W, which is absurd ; for it has been shewn (19. 3. Sup.), that

the hemisphere and the cone together differ from the sum of the cylinders

by a solid less than W. The hemisphere is therefore equal to two-thirds

of the cylinder described by the rectangle BD ; and therefore th<s whole
sphere is equal to two-thirds of the cylinder described by twice the rectan
gle BD, that is, to two-thirds of the circumscribing cylinder.

END OF THE SUPPLEMENT TO THE ELEMENTS.
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ELEMENTS

or

PLANE TRIGONOMETRY.

Triookometrt is the applicauoa of Arithmetic to Geometry : or, mor«

precisely, it is the application of number to express the relations of the sides

and angles of triangles to one anotlier. It tlierefore neceMarily sup|)oses

the elementary operations of arithmetic to be understood, and it borrows

from that science several of the signs or characters which peculiarly be*

long to it.

The elements of Plane Trigonometry, as laid down here.are divided into

three sections : the first explains the principles ; the second delivers the

rules of calculation ; the third conuins the construction of trigonometrical

tables, together with the investigation of some theorems, useful for extend*

ing trigonometry to the solution of the more difficult problems

SECTION I.

LEMMA I.

An mmgU ai the centra «fa drtU is to four right angles as the are on vhch
it stands is to the vihole cireumferenee.

Let ABC be an angle at the centre of the circle ACF, standing on th«

circumference AC : the angle ABC is to four right angles ss the arc AC
lo the whole circumference ACF.

Produce AB till it meet the circle

in £, and draw DBF perpendicular to

AE.
Then, because ABC, ABD are two

angles at the centre of the circle ACF,
the angle ABC is to the angle ABD as

the arc AC lo the arc AD, (33. 6.)

;

and therefore also, the an^le ABC is to

four times the angle ABD as the arc

AC to four times ihe arc AD (4. 5.).

But ABD is a right angle, and there-

fore four times the arc AD is equal to

28
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the whole circumference ACF ; therefore the angle ABC is to four right

angles as the arc AC to the whole circumference ACF.

Cor. Equal angles at the centres of different circles stand on arcs which

have the same ratio to their circumferences. For, if the angle ABC, at

the centre of the circles ACE, GHK, stand on the arcs AC, GH, AC is

to the whole circumference of the circle ACE, as the angle ABC jo ixn
right angles ,• tuid the arc HG is to the whole circumference of the circle

GHK in the same ratio.

DEFINITIONS.

1

.

If two straight lines intersect one another in the centre of a circle, tHo

re of the circumference intercepted between them is called the Measure
of the angle which they contain. Thus the arc AC is the measure of

the angle ABC.

2. If the circumference of a circle be divided into 360 equal parts, each of

these parts is called a Degree ; and if a degree be divided into 60 equal

parts, each of these is called a Minute ; and if a minute be divided into

60 equal parts, each of them is called a Second, and so on. And as many
degrees, minutes, seconds, &c. as are in any arc, so many degrees, mi-

nutes, seconds, &c. are said to be in the angle measured by that arc.

CoR. 1. Any arc is to the whole circumference of which it is a part, as

the number of degrees, and parts of a degree contained in it is to the

number 360. And any angle is to four right angles as the number of

degrees and parts of a degree in the arc, which is the measure of that

angle, is to 360.

CoR. 2. Hence also, the arcs which measure the same angle, whatever
be the radii with which they are described, contain the same number of
degrees, and parts of a degree. For the number of degrees and parts of

a degree contained in each of these arcs has the same ratio to the num-
ber 360, that the angle which they measure has to four right angles

(Cor. Lem. 1.).

The degrees, minutes, seconds, &c. contained in any arc or angle, are

usually written as in this example, 49°. 36'. 24". 42'"
; that is, 49 de-

grees, 36 minutes, 24 seconds, and 42 thirds.

3 Two angles, which are together equal to two right angles, or two arcs
which are together equal to a semicircle, are called the Supplements of
one another.

4 A straight line CD drawn through C, one of the extremities of the arc
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AC, perpendicolar to the diameter

passing through the other extremity

A, is called the Siru of the arc AC,
or of the angle ABC, of which AC
is the measure.

^OR 1 . The sine of a quadiant^or of

a right angle, is equal to the radius.

CoR. 2. The sine of an arc is half the

chord of twice that arc : this is eri>

dent by producing the sine of any

arc till it cut the circumference.

5. The segment DA of the diameter passing through A, one extremity of

the arc AC, between the sine CD and the point A, is called the Versid

sine of the arc AC, or of the angle ABC.

6. A straight line A£ touching the circle at A, one extremity of the arc.

AC, and meeting the diameter BC, which passes through C the other
' extremity, is called the Tangent of the arc AC, or of the angle ABC

Cor. The tangent of half a right angle is equal to the radius.

7. The straight line BE, between the centre and the extremity of the tan

gent AE is called the Secant of the arc AC, or of the angle ABC.

Cor. to Def. 4, 6,7, the sine, tangent and secant of any angle ABC, are

likewise the sine, tangent, and secant of its supplement CBF.
It is manifest, from Def. 4. that CD is the sine of the angle CBF. Lei

CB be produced till it meet the circle again in I ; and it is also mani
fest, that AE is the tangent, and BE the secant, of the angle ABI, or

CBF, from Def. 6. 7.

Cor. to Def. 4, 5, 6, 7. The sine, rersed sine, tangent, and secant of an

arc, which is the measure of any gi-

ven angle ABC, is to the sine, versed

sine, tangent and secant, of any other

arc which is the measure of the same
angle, as the radius of the first arc is

to the radius of the second.

Let AC, MN be measures of the angle

ABC, according to Def. 1.; CD Uie a» n "hrrT
sine, D.\ the versed sine. AE the

O JjlXl

tangent, and BE the secant of the arc AC, according to Def. 4, .'>, 6, 7 ,

NO the sine, OM the versed sine, MP the tangent, and BP the secant

of the arc MN. according to the same definitions. Since CD, NO, AE,
MP are parallel, CD : NO : : rad. CB : rad. NB, and AE : .MP : : rad.

AB : rad. BM, also BE : BP : : AB : BM ; likewise because BC : BD
: : BN : BO, that is, BA : BD : : B.M : BO, by conversion and alterna-

tion, AD : MO : : AB : MB. Hence the corollary is manifest. And
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therefore, if tables be constructed, exhibiting in numbers the sines, tan-

gents secai.ts, and versed sines of certain angles to a given radius, they

will exhibit the ratios of the sines, tangents, «fec. of the same angles to

any radius whatsoever.

In such tables, which are called Trigonometrical Tables, the radius is

either supposed 1, or some in the series 10, 100, 1000, &c. The use
and construction of these tables are about to be explained.

8. The difference between any angle

and a right angle, or between any
arc and a quadrant, is called the

Complement of that angle, or of that

arc. Thus, ifBH be perpendicular

to AB, the angle CBH is the com-

plement of the angle ABC, and the

arc HC the complement of AC
;

also, the complement of the obtuse

angle FBC is the angle HBC, its

excess above a right angle ; and
the complement of the arc FC is

HC.

9. The sine, tangent, or secant of the complement of any angle is called

the Cosine, Cotangent, or Cosecant of that angle. Thus, let CL or DB,
which is equal to CL, be the sine of the angle CBH ; HK the tangent,

and BK the secant of the same angle : CL or BD is the cosine, HK the

cotangent, and BK the cosecant of the angle ABC.

CoR. 1. The radius is a mean proportional between the tangent and the

cotangent of any angle ABC ; that is, tan. ABC X cot ABC=R2.
For, since HK, BA are parallel, the angles HKB, ABC are equal, and
KHB, BAE are right angles ; therefore the triangles BAE, KHB are

similar, and therefore AE is to AB, as BH or BA to HK.
CoR. 2. The radius is a mean proportional between the cosine and se-

cant of any angle ABC ; or
,

cos. ABC X sec. ABC=R2.
Since CD, AE are parallel, BD is to BC or BA, as BA to BE.

PROP. I.

In a right angled plane triangle, as the hypotenuse to either of the sides, so
the radius to the sine of the angle opposite to that side ; and as either of the

sides is to the other side, so is the radius to the tangent of the angle oppo-
site to that side.

Let ABC be aright angled plane triangle, of which BC is the hypote-
nuse. From the centre C, with any radius CD, describe the arc DE

;

draw DF at right angles to CE, and from E draw EG touching the circle

in E, and meeting CB in G ; DF is the sine, and EG the tangent of the

arc DE or of the angle C.
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The two triangles DFC, BAC, are equiangular, becanM the angle*

T)FC, BAC are right angle*, and the

angle at C is common. Therefore,

CB : BA : : CD : DF ; but CD ia

the radius, and DF the sine of the

angle C, (Def. 4.) ; therefore CB :

BA : : R : sin. C.

Also, because EG touches the cir-

cle in E, CEG is a right angle, and

therefore equal to the an^le BAC

;

and since the angle at C is common
to the triangles CBA, CGE, these triangles are equiangular, wherefote

CA : AB : : CE : EG ; but CE is the radius, and EG the tangent of the

angle C ; therefore, CA : AB : : R : tan. C.

Cor. 1. As the radius to the secant of the an^e G, so >• the side adja-

cent to that angle to the hypotenuse. For CG is the secant of the angle

G (def. 7.). and the triangka CGE, CBA being equiangular, CA : CB :

:

CE : CG, that is, CA : CB : : R : sec. C.

CoR. 2. If the analogies in this proposition, and in the abore corollary

be arithmetically expmsed, making tlM radius s 1, they give sin. C »
AR ar rc

tan. C a TPit sec. C a -77;. Also, since sin. Cacos. B, becauseB

AB
•gc

, and for the same reason, coa. C m

of the

BC*""-^"a^' AC-

is the complement of C, coa. B

AC
BC*
Cor. 3. In every triangle, if a perpendicular be drawn from any

angies on the opposite side, the segment « of

that side are to one another as the tangents of

the parts into which the opposite angle is di-

t-ided by the perpendicular. For, if in the tri-

angle ABC, AD be drawn perpendicular to

the base BC, each of the triangles CAD, .\BD
being right angled, AD : DC : : K : tan. CAD,
^dAD : DB : : R : tan. DAB ; therefore, ex
aquo, DC : DB : : tan. CAD : tan. BKD.

SCHOLIU.M.

The proposition, just demonstrated, is most easily remembered, by st.-iiiiig

k. thus : If in a rieht angled triangle tho hypotenuse be made the raiims,

the sides become the sines of the opposite angles ; and if one of the sidts be

made the radius, the other side becomes the tangent of the opposite angle.

and tho hypotenuse the secant of it.



222 PLANE TRIGONOMETRY

PROP. II. THEOR.

The sides of a plane triangle are to one another as the stnes of the oppostlt

angles.

From A any angle in the triangle ABC,
let AD be drawn perpe^idicular to BC.
And because the triangle ABD is right

angled at D, AB : AD : : R : sin. B ; and

for the same reason, AC : AD : : R :

sin. C, and inversely, AD : AC : : sin.

C : R ; therefore, ex aequo inversely, AB
: AC : : sin. C : sin. 'B. In the same
manner it may be demonstrated, that AB
1 BC : : sin. C : sin. A.

PROP. III. THEOR.

The sum of the sines of any two arcs of a circle, is to the difference of their

sines, as the tangent of half the sum of the arcs to the tangent of half theii

difference.

Let AB, AC be two arcs of a circle ABCD ; let E be the centre, and

AEG the diameter which passes through A ; sin. AC+sin. AB : sin. AG
-sin. AB : : tan. ^ (AC+AB) : tan.

I
(AC—AB).

Draw BF parallel to AG, meeting the circle again in F. Draw BH
and CL perpendicular to AE, and they will be the sines of the arcs AB
and AC

;
produce CL till it meet the circle again in D

;
join DF, FC, DE,

EB, EC, DB.
Now, since EL from the centre is perpendicular to CD, it bisects the

line CD in L and the arc CAD in A

:

DL is therefore equal to LC, or to the

sine of the arc AC ; and BH or IJv
being the sine of AB, DK is the sum
of the sines of the arcs AC and AB,
and CK is the difference of their sines

;

DAB also is the sum of the arcs AC
and AB, because AD is equal to AC,
and BC is their difference. Now, in

the triangle DFC, because FK is per-

pendicular to DC, (3. cor. 1.), DK :

KG : : tan. DFK : tan. CFK ; but
tan. DFK=tan. ^ arc. BD, because
the angle DFK (20. 3.) is the half of DEB, and therefore measured by
half the arc DB. For the same reason, tan. CFK=tan. ^ arc. BC ; and
consequently, DK : KG : : tan. ^ arc. BD : tan. i arc. BC. But DK is

the sum of the sines of the arcs AB and AC ; and KG is the difference of
the sines ; also BD is the sum of the arcs AB and AG, and BG the '".ifle-

rence of those arcs
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Cor. 1. Because EL is the cosine of AC, and EH of AB, FK is th«

sum of these cosines, and KB iheir difTerence ; for FK=JFB+EL=EH
+ EL, and KB= LH = EH-EL. Now, FK : KB : : un. FDK : lan.

RDK ; and un. DFK=coun. FDK, becaus« DFK is the complement

of FDK : thereforo, FK : KB : : coun. DFK : tan. BDK, that is, FK :

KB : : cotan. \ arc. DB : tan. ^ arc. BC. The sum of the cosines of two
arcs is therefore to the difference of the same cosines as the cotangent of

half the sum of the arcs to the tangent of half their difference.

CoR. 2. In the nght angled triangle FKD, FK : KD : : R : Un. DFK;
Now FK=cos. AB+cos. AC, KD= sin. AB+sin. AC, and tan. DFKs
lan. I (AH-f AC), therefore cos. AB+co«. AC : sin. AB+sin. AC : : R :

.an.}(.\B+AC).
In the liame nunner, by help of the triangle FKC, it may be ahewn that

cos. AB+cos. AC : sin. AC~sin. AB : : R : lan. ^(AC—AB).

Cor. 3. If the two arcs AB and AC be together equal to 90^, the tan-

gent of half their sum, that is, of 46'^, is equal to the radius. And the arc

BC being the excess of DC abore DB.or abore 90°, the half of the aro

BC will be equal to the excess of the half of DC abotre the half of DB.tlut

is, to the excess of ACabore 45^ ; therefore, when the sum of two arcs ia

00^, the sum of the sines of those area is to their diffVsrence as the radius to

the Ungent of the difllerence between either of them and 45°.

PROP. IV. THEOR.

The sum ofanf two tiitt of a triangU is to tksir differtnee, as the tangent of
knlf the sum ofthe mmgUs Ofposits to tkoso sides, to tks tangent ofkalftkew

difference.

\.e\ ABC be any plane triangle ;

C.\+ AB : CA-AB : : Un. J (B+C) : Un. \ (B-C).
For (2.) CA : AB : : ain. B : sin. C ;

and therefore (E. 5.)

CA+AB : CA—AB : : sin. B+sin. C : sin. B— sin. O.

But, bv the last, sin. B+sin. C : .sin. B— sin. C :

un. 1 (B+ C) : un. 1 (B—C) ; therefore also. (1 1. 5.)

CA + AU : CA-AB:: Un. ^(B+C): Un. ^ (B-C>.
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Otherwise, without the 3d.
,

Let ABC be a triangle ; the sum of AB and AC any two sides, is to the

difference of AB and AC as the tangent of half the sum of the angles ACB
and ABC, to the tangent of half their difference.

About the centre A wiih the radius AB, the greater of the two sides, de-

scribe a circle meeting BC produced in D, and AC produced in E and F
Join DA, EB, FB ; and draw FG parallel to GB, meeting EB in G

Because the exterior angle EAB is equal to the two interior ABC, ACB
(32. 1.) : and the angle EFB, at the circumference is equal to half the an-

{lle EAB at the centre (20. 3.) ; therefore EFB is half the sum of the an-

gles opposite to the sides AB and AC.
Again, the exterior angle ACB is equal to the two interior CAD, ADC,

and therefore CAD is the difference of the angles ACB, ADC, that is, of

ACB, ABC, for ABC is equal to ADC. Wherefore also DBF, which is

the half of CAD, orBFG, which is equal to DBF, is half the difference of

the angles opposite to the sides AB, AC.
Now because the angle FBE, in a semicircle is a right angle, BE is the

tangent of the angle EFB, and BG the tangent of the angle BFG to the

radius FB ; and BE is therefore to BG as the tangent of half the sum of

the angles ACB, ABC to the tangent of half their difference. Also CE is

the sum of the sides of the triangle ABC, and CF their difference ; and be-

cause BCis parallel to FG, CE : CF : : BE ; BG, (2. 6.) that is, the sum
of the two sides of the triangle ABC is Vj their difference as the tangent of

half the sum of the angles opposite tc ihoee sides to the tangent of half

their difference.
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PROP. V. THEOR.
i

^a perpenHeulmr he drawn from any a»gh ofa triangU to tkt o^oritt Jtii,

or bate ; the sum of the segments of tie base is to tM sttm of tie other two
tides of the trioHgle as the difference of those sides to the difference of the

segments of the base.

For (K. 6.), the rocungle under the sum and difference of the segments
of the base is equal to the rectangle under the sum and diflference of the

sides, and therefore |16. 6.) the sum of the segments of the base is to the

sum of the sides as tne difference of the sides to the diflference of the ••§-
menu of the base.

PROP. VI. THEOR.

In any triangle, twice the rectangle eeeUminei hy amy two side* t* to the dif-

ference between the sum of the mpeares of those tides, and the square of tk$

base, as the radius to the cosine of the angle included by the two tides.

Let ABC be any triangle, 2AB.UC is

to the difference between AD'+B^' ><><}

AC as radius to cos. B.

From A. draw AD perpendicular to BC,
and (12. and 13.2.) tlie difference be-

tween the sum of the squares of AB sod
BC, and the square on AC is equal to

2BC.BD.
But BC.BA : BC.BD : : BA : BD :

:

R : COS. B, therefore aUo 2 BC.BA : 2UC.
BD : : K : coa. B. Nuw 2UC.BD is the diffTerence between AB'+BC*
and AC^ therefore twice the rectangle

AB.BC is to the difference between A
AB«-f nc», and AC as radius to the

cosine of B.

Cor. If the radius =1, BDaBA
XC08. B, (1.), and 2BC.BAxcos. B
=s2BC.BD, and therefore when B is

acute, 2BC.BAXCOS. B = BC+BA»
—AC, and adding AC to both ; AC
+ 2 COS. B X BC.BA = BC + B.V»

;

and taking 2 cos. Bx BC.BA from both, AC=BC—2 cos. B x BC.BA
+ BA». Wherefore AC= ^/(BC—2 cos. Bx BC.BA+BA').

If B is an obtuse angle, it is shewn in the same wa}r that ACaa

y/(BC+2 COS. BxBC.BA-hBA»).
29
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PROP. VII. THEOR.

Four times the rectangle contained by any two sides of a triangle, is to /.' *

rectangle contained by two straight lines, of which one is the base or thirc^

side of the triangle increased by the difference of the two sides, and th*

other the base fliminished by the difference of the same sides, as the square

of the radius to the square of the sine ofhalf the angle included between the

two sides of the triangle.

Let ABC be a triangle of which BC is the base, and AB the greater of

the two sides ; 4AB.AC : (BC+(AB-AC)) X (BC-(AB-AC)) : : R^
r (sin. i BAC)2.

Produce the side AC to D, so that AD=AB
;
join BD, and draw AE,

CF at right angles to it ; from the centre C with the radius CD describe
the semicircle GDH, cutting BD in K, BC in G, and meeting BC pro-

duced in H.
It is plain that CD is the difference of the sides, and therefore that BH is

the base increased, and BG the base diminished by the difference of the

sides ; it is also evident, because the triangle BAD is isosceles, that DE is

the half of BD, and DF is the half of DK, wherefore DE—DF=the half

of BD—DK (6. 5.), that is, EF=i BK. And because AE is drawn pa-

rallel to CF, a side of the triangle CFD, AC : AD : : EF : ED, (2. 6.)

;

and rectangles of the same altitude being as their bases ACAD : AD^ : :

EF.ED : ED2 (1. 6.), and therefore 4AC.AD : AD^ : : 4EF.ED : ED^, or
alternately, 4AC.AD : 4EF.ED : : AD2 : ED^.

But since 4EF=2BK, 4EF.ED=2BK.ED=2ED.BK=DB.BK=
HB.BG ; therefore 4AC.AD : DB.BK : : AD2 : ED^. Now AD : ED : :

R : sin. EAC=sin. i BAC (1. Trig.) and AD2 : ED^ : : R^ : (sin. I BAC)2 :

therefore, (11. 5.) 4AC.AD : HB.BG : : R2 : (sin. ^ BAC)^, or since AB
:^AD, 4AC.AB : HB.BG : : R2 : (sin. ^ BAC)2. Now 4AC.AB is four
times the rectangle contained by the sides of the triangle; HB.BG is that

contained by BC-i-(AB—AC) and BC—(AB—AC).

CoR. Hence 2 v'AC.AD : ^HB.BG • • R : sin J BAC.
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PROP. VIII. THEOR.

Fimr times the reetangU contained bjf any two sides of a triangle, tt to th»

rectdngte contained by two straight lines, of tcAuh ont it the sum of those

tides tncreased by the base ofthe triangle, and the other fi|;«iim of the tamt
sides dtmtmshed by the base, as the square of the radiJwto the square of
the cosine of half the angle included between the two sides of the triangle.

Let ABC b« a triangle, of which BC is the base, and AB the greater of

the other two aides, 4AB.AC : (AB+AC-|-BC)(AB+AC~BC) : : R>:
(coe. I RAC)».
From the centre C, with the radius CB, describe the circle BLM, meet-

ing AC, produced, in L and M. Produce ALto N, so that AN=AB ; let

AL)=AB ; draw AE perpendicular to BD ; join BN, and let it meet the

circle again in P ; let CO be p«r{>endicular to BN ; and let it meet AE in R.
It is evidentthatMN= AB'|-AC-|-BC; and that LN=:AB+AC—

BC. Now, because BD ia bisected in E, and UN in A, BN is parallel to

AE, and is therefore perpendicular to BD, and the triangles DAE, DNB
are equiangular; wbcrefure, since DNs2AD.BN—2AE, and BPa2B0
=2RE; al8oPN=2AR.

But because the triangles ARC and AED are equiangular, AC : AD :

:

AR : AE, and because rectangles of the same altitude are as their bases

(1. 6.). ACAD : AD» : : AR.AE : AE'.and alternately ACAD : AR.AE
:

:
AI)» : AE». and 4ACAI) : 4AR.AE : : AD» : AE-'. Rut 4AR Ai:=

2ARx2AE= NP.NB= M.N.NL; therefore 4ACAD : MN.NL:: AD» :

AE», But AD : AE : : R : cos. DAE (1) =cos. 1 (BAC): Wherefors
4ACAD : MN.NL : : R» : (cos. \ BAC)'
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Now 4AC.AD is four times the rectangle under the sides AC and AB,

(for AD=AB), and MN.NL is the rectangle under the sum of the sidea

increased by the base, and the sum of the sides diminished by the base.

Cor. 1. Hence 2 ^ACAB : ^MN.NL : : R : cos. ^ BAC.
Cor. 2. Since by Prop. 7. 4AC.AB : (BC+(AB-AC)) (BC-(AB

—BC)) : : R2 : (sin. ^ BAC)^; and as has been now proved 4AC.AB :

(AB+AC+BC) (AB+AC-BC) : : R2 : (cos. ^ BAC)2; therefore, ex

2equo, (AB + AC + BC) (AB+AC-BC) : (BC + (AB-AC)) (BC-
(AB—AC)) : : (cos. i BAC)^ : (sin. ^ BAC)^. But the cosine of any arc

is to the sine, as the radius to the tangent of the same arc ; therefore, (AB
4-AC+BC) (AB+AC-BC) : (BC+(AB-AC)) BC-(AB-AC)) :

:

R2
: (tan. ^ BAC)^ ; and

V(AB+AC+BC) (AB+AC-BC :

V(BC+AB-AC) (BC-(AB—AC)) : : R : t^n. ^ BAC

LEMMA IL

If there he two unequal magnitudes, half their difference added to halfthetr

sum, is equal to the greater ; and half their difference taken from halfthetr

sum is equal to the less.

Let AB and BC be two unequal magnitudes, of which AB is the great-

er ; suppose AC bisected in D, and AE
equal to BC. It is manifest that AC is A E D B C
the sum, and EB the difference of the

magnitudes. And because AG is bisected in D, AD is equal to DC : but

AE is also equal to BC, therefore DE is equal to DB, and DE or DB is

half the difference of the magnitudes. But AB is equal to BD and DA,
that is, to half the difference added to half the sum ; and BC is equal to

the excess of DC, half the sum above DB, half the difference.

CoR. Hence, if the sum and the difference of two magnitudes be given,

the magnitudes themselves may be found ; for to half the sum add half the

difference, and it will give the greater : from half the sum subtract half

the difference, and it will give the less.

SCHOLIUM.
This property is evident from the algebraical sum and difference of the

two quantities a and h, of which a is the greater ; let their sum be denoted
by s, and their difference by d : then,

a-\-b=sa-\-b=s
}

a—b=dS
.".by addition, 2a=s-\-d;

and a=-—-+—-.2^2
By subtraction, 2b=s—di

=———

.
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SECTION n.

OF THE RULES OF TRldbNOMETRICAL
CALCULATION.

Thb Gbnerax. Problbk which Trigonometry prop(we« to re«olve la

:

In any plans triamgU, of the tArt* sides taui tke tkrts angUs^ any tkrts being

given^ and one e/Uiese three being a siie^ tojind any of the other three.

The things here said to be given tre understood to be expressed by their

numerical values : the angles, in degrees, minutes, Slc. ; and the sides in

feet, or any other known measure.

The reason of the restriction in this problem to those cases in which at

least one side is given, is evident from this, that by the angles alone being

given, the roagnitodes of the sides are not determined. Innumerable tri-

angles, equiangtilar to one another, may exist, without the sides of any

one of them being equal (o those of any other ; though the ratios of their

sides to one another will b« the same in them all (4. 6.). If therefore, only

the three angles are given, nothing can be determined of the triangle but

the ratkM of the sides, which may be found by trigonometry, as being the

same with the ratios of the sines of the opposite angles.

For the conveniency of calculation, it is usual to divide the general pro-

blem into two ; according as the triangle has, or has not, one of the angles

a right angle.

PROBLEM I.

/m a right angled triangle, ofthe three sides, and three angles, any two betng

given, besides the right angle, and one of those tico being a side, it is required

to find the other thrte.

It is evident, that when one of the acute angles of aright angled triangle

is given, the other is given, being the complement of the former to a right

angle; it is also evident that the sine of any of the acute angles is the

cosine of the other.

This problem admits of several cases, and the solutions, or rules for cal-

culation, which all depend on the first Proposition, may be conveniently

exhibited in the form of a table ; where the 6rst column contains the things

given ; the second, the things required ; and the third, the rules or propo>

sitions by whi^h they are found.
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GIVEN. BOOGHT. SOLnXlON.

CB and B, iht

hypotenuse and

angle.

AC.
AB.

R : sin B : : CB : AC.
R : cos B : : CB : AB.

1

2

AC and C, a

side and one of

the acute angles.

BC.
AB.

Cos C : R :: AC : BC.
R : tan C : : AC : AB.

3

4

CB and BA,
the hypotenuse

and a side.

C
AC.

CB : BA :: R : sin C.

R ; cos C : : CB : AC.
5

6

AC and AB,
the two sides.

C.

CB.
AC : AB : : R : tan C.

Cos C : R : : AC : CB.
7

8

Remarks on the Solutions in the table.

In the second case, when AC and C are given to find the hypotenuse

BC, a sohition may also be obtained by help of the secant, for CA : CB : :

R : sec. C. ; if, therefore, this proportion be madeR : sec. C : : AC : CB,
CB will be found.

In the third case, when the hypotenuse BC and the side AB are given

to find AC, this may be done either as directed in the Table, or by the

47th of the first; for since AC2 = BC2 — BA2, AC = /liC^ — BA^.
This value of AC will be easy to calculate by logarithms, if the quantity

BC2—BA2 be separated into two multipliers, which may be done ; because

(Cor. 5. 2. ), BC2-BA2=(BC + BA) . (BC-BA). Therefore AC =
V(BC+BA) (BC-BA).
When AC and AB are given, BC may be found from the 47th, as in the

preceding instance, for BC= ^BA^-f AC^, But BA^+AC^ cannot be

separated into two multipliers ; and therefore, when BA and AC are large

numbers, this rule is inconvenient for computation by logarithms. It is

best in such cases to s^ek first for the tangent of C, by the analogy in the

Table, AC : AB : : R : tan. C ; but if C itself is notrequired,itis sufficient,

having found tan. C by this proportion, to take from the Trigonometric
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Tables the cosine that corresponds to tan. C, and then to compute CB from

the proportion cos. C : R : : AC : CB.

PROBLEM n.

In an obUqu* angled triangle, of the three sides and three angles, any tkrm
being given^ md on* ofthese three being a side, it is rehired tojind the

other three.

This problem has four cases, in each of which the solution depends oa
•onto of the foregoing propositions.

CASE L

Two angles A and B, and one side AB.of a triangle ABC, being fivaa,

to find the other sides.

SOLUTION.

Because the angios A and B are given, C is also given, being the mp-
plement of A+B ; and, (3.)

Sin. C : sin. A : : AB : BC ; also.

Sin. C : sin. B : : AB : AC.

CASE II.

Two sides AB and AC, and the an^e B opposite to one of them, being

given, to find the other angles A and C, and also the other side BC.

SOLUTION.

The angle C is found from this proportion, AC : AB : : nin. B : sin. C.

Also, A= 180O—B—C ; and then, sin. B : sin. A . : AC : CB.by Case 1.

In this case, the angle C may have two values ; for its sine being found

by the proportion above, the ani^le belonging to that sine may either bo that

which is found in the tables, or it may be ihe supplement of it (Cor. ilef 4.).

This ambiguity, however, does not arise from any defect in the solutiort,

but from a circumstance esaential to the problem, viz. tliat whenever AC
is less than AH, thtre are two triangles which have the sides AH, AC, and

the angle at B of the same magnitude in each, but which arc nevertheless

unequal, the angle opposite to .AH in the one, being the siipplcinent ot tnat

which is opposite to it in the other. The truth of this appears by. describ-

ing from the centre A with the radius AC, an arc intersecting BC in C
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A.

B C^"^ -^C
and C ; tbeu, if AC and AC be drawn, it is evident that the triangles

ABC, ABC have the side AB and the angle at B common, and the sides

AC and AC equal, but have not the remaining side of the one equal to the

remaining side of the other, that is, BC to BC, nor their other angles equal,

VIZ. BCA to BCA, nor BAC to BAC. But in these triangles the angles

ACB, ACB are the supplements of one another. For the triangle CAC
is isosceles, and the angle ACC=ACC, and therefore, ACB, which is

the supplement of ACC, is also the supplement of ACC or ACB ; and
these two angles, ACB, ACB are the angles found by the computation
above.

From these two angles, the two angles BAC, BAC will be found : the

angle BAC is the supplement of the two angles ACB, ABC (32. 1.), and
therefore its sine is the same with the sine of the sum of ABC and ACB
But BAC is the difference of the angles ACB, ABC : for it is the diffe-

rence of the angles ACC and ABC, because ACC, that is, ACC is equal
to the sum of the angles ABC, BAC (32. 1.). Therefore, to find BC,
having found C, make sin. C : sin. (C-f-B) : : AB : BC ; and again, sin.

C : sin. (C-B):: AB : BC.
Thus, when AB is greater than AC, and C consequently greater than

B, there are two triangles which satisfy the conditions of the question.

But when AC is greater than AB, the intersections C and C fall on oppo-
site sides of B, so that the two triangles have not the same angle at B com-
mon to them, and the solution ceases to be ambiguous, the angle required
being necessarily less than B, and therefore an acute angle.

CASE III.

Two sides AB and AC, and the angle A, between them, being given to

find the other angles B and C, and also the side BC.

SOLUTION.

First, make AB+AC : AB—AC : : tan. ^ (C+B) : tan. | (C—B).
Then, since i (C+ B) and i (C— B) are both given, B and C may be found.
For B=i (C+B)+i (C-B), and C= i (C+B)-^- (C-B). (Lem. 2.)

To find BC.

Having found B, make sin. B : sin. A : : AC : BC.
But BC may also be found without seeking for the angle B and C ; fol

BC= v'AB2-2 COS. A X AB"jU:TaC2. Prop 6.
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This method of finding BC is extremelj useful in many geometrical in*

estigations, but it is not very well sdapted for compuution by logarithms,

because the quantity under the radical sign cannot be separated into aim-

pie multipliers. Therefore, when AB and AC are expressed by large

numbers, the other solution, by finding the angles, and then computing BC|
is preferable.

CASE IV.

Tho three sides AB, BC, AC, being given, to find the A, B, C.

BOLVTIOir t.

Take F such that BC : BA+AC : : BA—AC : F, then F is either the

•am or the diflerence of BD, DC, the segments of the base (5.)- If F be

r
later than BC, F is the sum, and BC the diflerence of BD, DC ; but, if

be less than BC, BC is the sum, and F the diflerence of BD and DC.
In either ca«e, the sum of BD and DC, and their diflference being given,

BD and DC are found. (Lem. 2.)

Then,(l.) CA : CD : : R : cos. C ; and BA : BD : : R : ooe. B ; when-
fore C and B are given, and consequently A.

C D

Let D be the diflerence of the sides AB, AC. Then (Cor. 7.) 2 -/liSjiC

V(BC+D) (UC-D) : : R : sin. J BAC.

SOLOTION lit.

Lets be the sum of the sides BA and AC. Then (I. Cor. 8.) 2 y/TSJiC
>^(S+BC) (S-BC) : : R : cos. J BAC.

soLtrrioN IV.

S and D retainingthe significations above, (2.Cor.8.) ^(§+BC)(S—BC)
: V(JiC-l-D) (BC-D) : ; R : un. J BAC.

It may be observed of these four solutions, that the first has the advan-
tage of being easily remembered, but that the others are rather more expe-
ditious in calculation. The second solution is preferable to the third, when
the angle sought is less than a right angle ; on the other hand, the third

is preferable to the second, when the angle sought is greater than a right

30
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angle ; and in extreme cases, that is, when the angle sought is very acyte

or very obtuse, this distinction is very material to be considered. The
reason is, that the sines of angles, which are nearly = 90°, or the cosines

of angles, which are nearly = 0, vary very little for a considerable varia-

tion in the corresponding angles, as may be seen from looking into the ta-

bles of sines and cosines. The consequence of this is, that when the sine

or cosine of such an angle is given (that is, a sine or cosine nearly equal to

the radius,) the angle itself cannot be very accurately found. If, for in-

stance, the natural sine .9998500 is given, it will be immediately per-

ceived from the tables, that the arc corresponding is between 89°, and 89*3

r ; but it cannot be found true to seconds, because the sines of 89° and of

89° 1', differ only by 50 (in the two last places,) whereas the arcs them-

selves differ by 60 seconds. Two arcs, therefore, that differ by 1", or even

by more than 1", have the same sine in the tables, if they fall in the last

degree of the quadrant.

The fourth solution, which finds the angle from its tangent, is not liable

to this objection ; nevertheless, when an arc approaches very near to 90°,

the variations of the tangents become excessive, and are too irregular to

allow the proportional parts to be found with exactness, so that when the

angle sought is extremely obtuse, and its half of consequence very near to

90, the third solution is the best.

It may always be known, whether the angle sought is greater or less

than a right angle by the square of the side opposite to it being greater oi

less than the squares of the other two sides.

SECTION III.

OONSTRUCTION OF TRIGONOMETRICAL TABLES.

In all the calculations performed by the preceding rules, tables of sines

and tangents are necessarily employed, the construction of which remains

to be explained.

The tables usually contain the sines, &c. to every minute of the quad-

rant from 1' to 90°, and the first thing required to be done, is to compute
the sine of 1', or of the least arc in the tables.

1. If ADB be a circle, of which the centre is C, DB, any arc of that cir-

cle, and the arc DBE double of DB ; and if the chords DE, DB be drawn,

also the perpendiculars to them from C, viz. OF, CG, it has been demon-
strated (8. 1. Sup.), that CG is a mean proportional between AH, half the

radius, and AF, the line made up of the radius and the perpendicular CF.
Now CF is the cosine of the arc BD, and CG the cosine of the half of BD ;

whence the cosine of the half of any arc BD, of a circle of which the ra-

dius = 1, is a mean proportional between ^ and 1+cos. BD. Or, for the

greater generality, supposing A = any arc, cos. ^ A is a mean proportional
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between \ and 1+cos. A, and tker«rore (co«. \ A)'asJ (1-f cos- A) or cot.

J A = Vi(l+cos. A).

2. From this theorem, (which is the same that is demonstrated (8. 1.

Sup.), only that it is here expressed trigonometrically,) it is evident, that if

the cosine of any arc be given, the cosine of hsif that arc may bo found.

Let BD, therefore, be equid to 60^, so that the chord BD=: radius, tlion the

cosine or perpendicular CF was shewn (9. 1. Sup.) to be =), and there-

fore cos. I BD, or COS. 30°= VW+i)^ ^l- :-^. In the same man-
2

ner, cos. 15®= ^i(l+coe.30oj, and cos. 7°, 30's3 <^^ (\-\- cos. \ 5^), ice
In this way the cosine of 3*^, 45 , of 1°, 52', 30", and so on, will be com-
puted, till aAer twelve bisections of the arc of 60^, the cosine of 52". 44"'.

93"". 45'. is found. But from the cosine of an arc its sine may be

found, for if from the square of the radius, that is, from l,tho square of

the cosine be taken away, the remainder is the square of the sine, and ile

square root is the sine itself. Thus the sine of 52". 44"'. 03"". 45\ is

found.

3. But it is manifest, that the sines of very small arcs are to one another

nearly as the arcs themselves. For it has been shewn that the number of

the sides of an equilateral polygon inscribed in a circle may be so great,

that the perimeter of the polygon and the circumference of the circle may
dilTcr by a line less than any given line, or, which is the same, mny be

nearly to one another in the ratio of equality. Therefore their like parts

will also be nearly in the ratio of equality, so that the side of the polygon

will be to the arc which it subtends nearly in the ratio of equality ; and

therefore, half the side of the polygon to half the arc subtended by it, that

is to say, the sine of any very small arc will be to the arc itself, nearly iu

the ratio of equality. Therefore, if two arcs are both very small, the first

will be to the second as the sine of the first to the sine of the second.

Hence, from the sine of 52". 54"'. 03"". 45». being found, the sine of I*
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becomes known , for, as 52". 44"'. 03"". 45^. to l,so is the sine of the

former arc to the sine of the latter. Thus the sine of 1' is found =
0.0002908882.

4. The sine 1' being thus found, the sines of 2', of 3', or of any number
of minutes, may be found by the following proposition.

THEOREM.

Let AB, AC, AD be three such arcs, that BC the difference of the first

and second is equal to CD the difference of the second and third ; the ra-

dius is to the cosine of the common difference BC as the sine of AC, the

middle arc, to half the sum of the sines of AB and AD, the extreme arcs.

Draw CE to the centre : let BF, CG, and DH perpendicular to AE, be

the sines of the arcs AB, AC, AD. Join BD, and let it meet CE in I

;

draw IK perpendicular to AE, also BL and
IM perpendicular to DH. Then, because

the arc BD is bisected in C, EC is at right

angles to BD, and bisects it in I ; also Bl is

the sine, and EI the cosine of BC or CD.
And, since BD is bisected in I, and IM is

parallel to BL (2. 6.), LD is also bisected in

M. Now BF is equal to HL, therefore BF
+DH=DH+HL = DL+2LH = 2LM+
2LH=2MH or 2KI ; and therefore IK is

half the sum of BF and DH- But because

the triangles CGE, IKE are equiangular,

CE : EI : : CG : IK, and it has been shewn that EI=cos. BC, and IK=
I (BF+DH) ; therefore R : cos. BC : : sin. AC : ^ (sin. AB+sin. AD).

CoR. Hence, if the point B coincide with A,

R : cos. BC : : sin. BC : ^ sin. BD, that is, the radius is to the cosme ot

any arc as the sine of the arc is to half the sine of twice the arc ; or if any
arc= A, ^ sin. 2A=sin. A X cos. A, or sin. 2A=2 sin. A X cos. A.

Therefore also, sin. 2'=2' sin. 1' x cos. I' : so that from the sine ati
cosine of one minute the sine of 2' is found.

Again, 1', 2', 3', being three such arcs that the difference between the

first and second is the same as between the second and third, R : cos. 1'
: :

sin. 2 : 1 (sin. I'+sin. 3'), or sin. I'-fsin. 3'=2 cos. I'+sin. 2', and taking
sin. 1' from both, sin. 3'=2 cos. I'Xsin. 2'— sin. 1.

In like manner, sin. 4'=2' cos. I'X'sin. 3'—sin. 2,

sin. 5'=2' cos. I'xsin. 4'— sin. 3,

sin. G'=2' COS. I'xsin. 5'— sin. 4, &c.
Thus a table containing the sines for every minute of the quadrant may

be computed ; and as the multiplier, cos. 1' remains always the same, the
calculation is easy.

For computing the sines of arcs that differ by more than 1', the method
is the same. Let A, A+B, A+2B be three such arcs, then, by this the-

orem, R : cos.B : : sin. (A+B) : J (sin. A+sin. (A-H2B)) ; and therefore
making the radius 1,
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tin. A+sin. (A+2B)=2 co«. Bxsin. (A+B),
or sin. (A-f2B)»2 coe. Bxmd. (A+B)—»ui. A.

^ By means uf these theorem*, a. table of the sines, and conseqnendj nbo
•f the cosine*, of arcs of any number of dsgrsss and minutes, from ts 90,

nay be constructed. Then, because tan. A=s—'—r-^ the table of tangents

I* computed by dividing the sine of any arc by the cosine of the same arc.

When the tangents have been found in thi* nuinner as far as 49^, the tan*

gents for the other half of the quadrant may be found more eaailj^ by an-

other rule. For the tangent of an arc above 43^ being the co^aingeni of

an arc as much under 45"^ ; and the radius being a mean proportiunal be-

tween tike ungent and co-tangent of any arc ( 1 . Cor. def. 9), it follows, if

the difference between any arc and 45*^ be called D, that tan. (46^—D) :

I : r 1 : tan. (450+D), so that tan. (450+D)«jj_L__-

.

Lastly, the secants are calculated from (Cor. 2. def. 9.) where it is

shewn that the radius is a mean proportional between the cosine and th»

secant of any arc, so that if Abe any arc, sec. A= r-' '
cos. A

The versed sines are fotmd by subtracting ths cosines from the radius.

5. The preceding Theorem is one of four, which, when srithmetically

expressed, are frequently tised in the application of trigonometry to the so*

lution of problems.

Imo, If in the last Theorem, the arc ACsA, the arc BC=B, and the

radius EC= I, then AD=s.\-(-ti, and AB=sA—B ; and by what has just

beep demonstrated,

1 : co». B : : sin. A : ^ sin. (A4-B)+} sin. (A—B),
and therefore,

sin. Ax COS. B=*sin. (A-f B)+ i (A— B).

2<io, Because DP, IK, DH are paraltel, the straight lines BD and PH
ire cut (>ro[>0!tionally, and therefore PH. the difference of the straight lines.

FE and II II, is bisected in K; and therefore, as was shewn in the last

Tlteorem, IvK is half the sum of PE and HE, that is, of the cosiiieit of the

arcs AH inul Al). But because of tiie similar triangles EGC, EK1,£C
: EI : : G H : EK ; now, GE is the cosine of AC, therefore,

K : COS. BC : : cos. AC : \ cos. AD+J cos. AU,
or 1 : COS. B :: cos. A : J cos. (A-f B)4-ico8. (A— B)

;

and therefore,

COS. \xcos. B= J cos. (A4-B)-fJ cos. (A— B);
3/10, A^aiii, the triangles ID.M, CEG are equiangular, for the auKlns

KIM, Eli) arc equal, being each of them right angles, and therefon', Lik-

ing away llie anirle EIM, the angle Dl.M is equal to the angle EIK, tiiai

is, to the ansjie ECG ; and the angles DMI,CGE are also e(jual, Ix-nig

both rinht anjjies, and therefore the triangle* IDM, CGE have tlit' Hides

about their ecjual angles proportionals, and consequently, EC : CG : : Ul
: IM ; now, I.M is half the dilTerence of the cosines PE and EH, tiierefore,

R : sin. AC : : ain. BC : i cos. AB— 1 cos. AD,
or 1 : sin. A : : sin. B : ^ cos. (A—B)—^cos. (A-f-B) •
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and also,

sin. Ax sin. B=^ cos. 'A—B)—^ cos. (A+B).
4to, Lastly, in the same triangies EGG, DIM, EC : EG : : ID : DM

;

now, DM is lialf tbe difference of the sines DH and BE, therefore,

R : cos. AC : : sin. BC :
i sin. AD—A sin. AB,

or 1 : COS. A : : sin. B : ^ sin. (A+B)—| sin. (A+B)

;

and therefore,

COS. Axsin. B=^ sin. (A+B)—i sin. (A—B).

6. If therefore A and B be any two arcs whatsoever, the radius being

supposed 1
;

L sin. Axcos B=^sin. (A+B)+isin. (A—B).

IL cos.Axcos. B=icos.(A—B)+|cos.(A+ B)

m. sin. Axsin. B=|cos.(A- BJ-Jcos.(A+B).
2IV. cos.Axsin. B=i sin. (A+B)—X sin. (A B).

From these four Theorems are also deduced other four.

For adding the first and fourth together,

sin. Axcos. B+cos. Axsin. B=sin. (A+B).
Also, by taking the fourth from the first,

sin. Axcos. B— cos. Axsin. B=sin. (A— B).

Again, adding the second and third,

cos. Axcos. B+sin. Axsin. B=cos. (A—B)

;

And, lastly, subtracting the third from the second,

cos. Axcos. B—sin. Axsin. B=cos. (A+B).

7. Again, since by the first of the above theorems,

8in.Axcos.B=^sin.(A+B)+^sin.(A—B),ifA+B=S,andA—B=D,
1. /T ox A

S+D _,„ S-D , . . S+D
then (Lem. 2.) A-=—-—, and B=—-— ; wherefore sin. —-— X oos.

jg T\

—-—=Jsin. S+^D. But as S and D maybe any arcs whatever, to

preserve the former notation, they may be called A and B, which also ex-

press any arcs whatever : thus,

. A+B A-B , . , , , . „
sm.—-—X COS.—-—=^ sm. A+| sm. B, or

„ . A+B A—B . . . „
2 sm. —-— xcos.—-—=sm. A+sm. B.

In the same manner, from Theor. 2 is derived,
4 ID A T)

2 cos. '—^— X COS.——=cos. B+cos. A. From the 3d,

„ . A+B . A—

B

sm. —^xsm.——=cos. B— cos. A ; and from the 4th,

A+B . A-B
2 COS.—— xsm. ___=gin. A—sin. B.

In all these Theorems, the arc B is supposed less than A.

8. Theorems of tne same Kind with respect to the tangents of arcs may
be deduced from the preceding. Because the tangent of any arc is equal
to the sine of the arc divided by its cosine,
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tun. (A 4-B)=s
**"'

^ ..; . But it has jiwt been shewn, that
COS. (A+o)

•in. (A-4-B)=siii. Ax cos. B-fcos. Axsin. b, and that

COS. (a4-U)=co8. Axcos. B—sin. Axsin. B; therefore, tan. (A+B) sa

sin. Axcos. B-4-C08. Axsin. B ,,•,...• .1-—!—

I

—— , and dindine both the numerator and dono-
cos. Ax COS. li—sin. AXsm. B

_ —tan. A 4- tan. B
minator of this fraction by cos. Axcos. B,tan. (A+B)=-; 1 k.

TIL /» n\ tan. A un. B
In uke manner, tan. (A—B)=:;— ; r..

' * ' 1-ftan. Ax tan. B

9. If the Theorem demonstrated in Prop. 3, b« expressed b the sam*
manner with those above, it gives

sin. A-t-sin. B _ tan. \ (A-f-B)

sin. A—«iu. B ~
lan. ^ (A— B)*

Also by Cor. 1, to the 3d,

COS. A+cos. B cot ^ (A+ B)

COS. A—COS. B tan. ^ (.\— B)'

And bv Cor. 2, to the same proposition,

siii.'A+»»n. B lan. 4(A+B) _. .
, ,—

.

n = *^ -, or smce R is here supposed m 1.
, COS. A+cos. B K ri t

sin. A+sin. B
\ 1 x t n\

r-r 5 = tan. J (A-f B).
cos. A-f COS. B a \ • /

10. In all the preceding Theorems, R, the radius, is supposed sI,bo>
cause in tltis way the propociiiiuns are most concisely expressed, and ar«

also most readily applied lo tri*;ononietrical circulation. But if it be re-

quircii to enunciate any of thcMU geonietrically, the multiplier R, which
huH disnppearrd. by being made == I, must bo restored, and it will always
be evident from inspection in what terms this multiplier is wanting. Thus,
Thoor. 1,2 sir).\x cos. B=sin. (A+B)+8in. (,\— B), is atrue proposition,

taken nrithmt'tically ; but uken geomvlrically, is sb-surd, unless we sup-

ply the ra<]iar« as a multiplier of the terms on the right hand of the sine of

otpjality. ItiluMibccomes'Jsin. .\Xco8. B= R (8in.(A-|-B)-H8in. (A— B));
or iwirc thu rectangle under the sine of A, and the cosine of B equal to the

rectaiiulu under thd radius, and the sum of the sines of A-f B and A— B.

In (^iTHTai, the number oiUnrar muUipltrrs, that is, of lines whose nume-
rical valufs are multiplied together, must bo the same in every term, other-

wise wu will compare unlike magnitudes with one another.

The iiro{)08itions in this section are useful in many of the higher branches

of the Matiiematics, and are the foimdation of wbnt is called tlie Arithmetit

tf Sines.



ELEMENTS
OF

SPHERICAL

TRIGONOMETRY.

PROP. I.

Ifa sphere he cuthy aplane through the centre, the section is a circle, having the

same centre with the sphere, and equal to the circle by the revolution ofwhich

the sphere was described-

For all the straight lines drawn from the centre to the superficies of the

sphere are equal to the radius of the generating semicircle, (Def. 7. 3.

Sup.). Therefore the common section of the spherical superficies, and of

a plane passing through its centre, is a line, lying in one plane, and hav-

ing all its points eqiially distant from the centre of the sphere ; therefore it

is the circumference of a circle (Def. 11. 1.), having for its centre the cen-

tre of the sphere, and for its radius the radius of the sphere, that is, of the

semicircle by which the sphere has been described. It is equal, therefore,

to the circle of which that semicircle was a part.

DEFINITIONS.

1

.

Any circle, which is a section of a sphere by a plane through its centre,

is called a great circle of the sphere.

CoR. All great circles of a sphere are equal ; and any two of them bisect

one another.

They are all equal, having all the same radii, as has just been shewn ; and
any two of them bisect one another, for as they have the same centre,

their common section is a diameter of both, and therefore bisects both.

2. The pole of a great circle of a sphere is a point in the superficies of the

sphere, from which all strai ^\ii lines drawn to the circumference of the

circle are equal.

3. A spherical angle is an angle on the superficies of a sphere, contained

by the arcs of two great circles which intersect one another ; and is the

eame with the inclination of the planes of these great circles
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4. A spherical triangle is a figure, upon the superficies of a sphere, com-
prehended by three arcs of three great circles, each of which is less than

a semicircle.

PROP. ii.

Tkt are of a great circle^ between th»poU and the dreumferenct ofanotktr

great ctrde, u a quadrant.

Let / BC be a great circle, and D iu pole ; if DC, an arc of a great

circle, pass through D, and meet ABC in U, the arc DC is a quadrant.

Let the circle, of which CD is an arc, meet ABC again in A, and let

AC be the common section of the planes

of these great circles, which will pass

through E, the centre of the sphere : Join

DA, DC. Because ADsDC, (Def. 2.),

and equal straight lines, in the same cir-

cle, cut off equal arcs (28. 3.), the arc AD
as the arc DC ; but ADC is a semicircle,

theiefore the arcs AD, DC are each of

them quadrants.

CoR. 1. If DE be drawn, the angle AED is a right angle ; and DE
being therefore at right angles to every line it meets with in the plane of
tne circle ABC, is at right angles to that plane (4. 2. Sup.). Therefore
the straight line drawn from the pole of any great circle to tne centre of the

sphere is at right angles to the plane of that circle ; and, conversely, a
straight line drawn from the centre of the sphere perpendicular to the plane

of any greater circle, meets the superficies of the sphere in the pole of that

circle.

CoR. 2. The circle ABC has two poles, one on each side of its plane,

which are the extremities of a diameter of the sphere perpendicular to the

plane ABC ; and no other points but these two can be poles of the circle

ABC.

PROP. III.

If tkt pole ofa great eirele be the same with the int^tection of other twogi eat

arcles : the are of the first mentioned circle intercepted between the other

tiro, is the measure of the spherical angle which the same two circlts mahe
with one another.

Let the great circles BA, CA on the superficies

of a sphere, of which the centre is D, intersect one
another in A, and let BC be an arc of another great

circle, of which the pole is A ; BC is the measure
of the spherical angle BAC.

Join AD, DB, DC ; since A is the pole of BC,
AB, AC are quadrants (2.), and the angles .\DB,
ADC are right angles : therefore (4. def. 2. Sup.),

the angle CDB is the inclination of the pianos of
31
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the circles AB, AC, and is (def. 3.) equal to the spherical angle BAG;
but the arc BG measures the angle BDC, therefore it also measures the

spherical angle BAG.*

Cor. If two arcs of great circles, AB and AG, which intersect one an-

other in A, be each of them quadrants, A will be the pole of the great cir-

cle which passes through E and G the extremities of those arcs. For

since the arcs AB and AG are quadrants, the angles ADB, ADC are right

angles, and AD is therefore perpendicular to the plane BDC, that is, to the

plane of the great circle which passes through B and C. The point A is

therefore (1. Cor. 2.) the pole of the great circle which passes through B
and G.

PROP. IV.

If the planes of two great circles of a sphere be at right angles to one another,

the circumference of each of the circles passes through the poles of the

other ; and if the circumference of one great circle pass through the poles

of another, the planes of these circles are at right angles^

Let AGBD, AEBF be two great circles, the planes of which are right

angles to one another, the poles of the circle AEBF are in the circumference

AGBD, and the poles of the circle AGBD in the circumference AEBF.
From G the centre of the sphere, draw GG in the plane AGBD perpen-

dicular to AB. Then because GG in the plane AGBD, at right angles

to the plane AEBF, is at right angles

to the common section of the two
planes, it is (Def. 2. 2. Sup.) also at

right angles to the plane AEBF, and

therefore (1. Gor. 2.) G is the pole of

the circle AEBF ; and if GG be pro-

duced in D, D is the other pole of the

circle AEBF.
In the same manner, by drawing

GE in the plane AEBF, perpendicu-

lar to AB, and producing it to F, it has
shewn that E and F are the poles of

the circle AGBD. Therefore, the

poles of each of these circles are in

the circumference of the other.

Again, If C be one of the poles of the circle AEBF, the great circie

AGBD which passes through G, is at right angles to the circle AEBF.
For, GG being drawn from the pole to the centre of the circle AEBF, is

at right angles (1. Gor. 2.) to the plane of that circle ; and therefore, everv

plane passing through GG (17. 2. Sup.) is at right angles to the plane

AEBF ; now, the plane AGBD passes through GG.

GoR. 1. If of two great circles, the first passes through the poles of *he

When in any reference no mention is made of a Book, or of the Plane 1 igonometry, th«

Snherical Trigonometrv is meant.
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•econJ, die second alio passes through the polos of the first. For, if the

first passes through the poles of the second, the plane of the first must be

at right angles to the plane of the second, by the second part of this propo>

sition ; and therefore, by the first part of it, the circumference ol each

passes through the poles of the other.

Cor. 2. All greater circles that hare a comnnon diameter hare their

poles in the circiunference of a circle, the plane of which is perpendicular

to that diameter.

PROP. V.

In isosceles spherical triangles the angle* at the boss an equoL

Let ABC be a spherical triangle, haring the side AB equal to the aide

KC
i
the spherical angles ABC and ACB are equal.

Let C be the centre of the sphere ; join

DB, DC, DA, and from A on the straight

lines DB, DC, draw the perpendiculars AE,
AF ; and from the points L and F draw in

the plane DBC the straight lines EG, FG
perpendicular to DB and DC, meeting one
another in G : Join AG.

Because DE is at right angles to each of

the straight lines AE, EG, it is at right angles

to the plane AEG, which passes through

AE, EG (4. 2. Sup.) ; and therefore, erery

plane that passes through DE is at right angles to the plane AEG (17. 2.

Sup.) ; wherefore, the plane DBC is at right angles to the plane AEG.
For the same reason, the plane DBC is at right angles to the plane AFG,
and therefore AG, the common section of the planes AFG, AEG is at

right angles (18. 2. Sup.) to the plane DBC, and the angles AGE, AGF
are consequently right angles.

But since the arc AB is equal to the arc AC, the angle ADB is equal

to the ani;le .\DC. Therefore the triangles ADE. ADF, hare the angles

ED.\, Fl).\, equal, as also the angles AED, AFD, which are right an-

gles ; and ihoy bare the side AD conunon, therefore the other aides are

equal, viz. AE lo AF(26. 1.), and DE to DF. Again, because the angles

AGE, AGF are right angles, the squares on AG and GE are equal to iho

square of AE ; and the squares of AG and GF to the square of .\F. Hut

the squares of AE and AF are equal, therefore the squares of AG and (>K

are equal to the squares of AG and GF, and taking away the cornmon
square of AG, the remaining squares of GE and GF are equal, and CA'. is

therefore equal to GF. Wherefore, in the triangles AFG, AEG, the side

GF is equal to the side GE, and AF has been proved to be equal to AE,
and the base .\G is common; therefore, the angle .\FG is equal lo the

angle AEG (8. 1.). But the angle AFG is the angle which the plane

ADC makes with the plane DBC (4. def. 2. Sup), because F.V and FCJ,

which are drawn in those planes, are at right angles to DF, tlic common
secuoo of the planes. The angle AFG (3. def.) is therefore equal !o the
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spherical angle ACB ; and, for the same reason, the angle AEG is equal

to the spherical angle ABC. But the angles AFG, AEG are equal.

Therefore the spherical angles ACB, ABC are also equal.

PROP. VI. 1

If the angles at the base ofa spherical triangle he equal, the triangle is isosceles^

Let ABC be a spherical triangle having the angles ABC, AjCB equal

to one another ; the sides AC and AB are also equal.

Let D be the centre of the sphere
;
join DB, DC, DA, and from A on

the straight lines DB, DC, draw the perpendiculars AE, AF ; and from

the points E and F, draw in the plane DBC a

the straight lines EG, FG perpendicular to

DB and DC, meeting one another in G

;

join AG.
Then, it may be proved, as was done in | \ v\ \ ^C

the last proposition, that AG is at right an-

gles to the plane BCD, and that therefore

the angles AGF, AGE are right angles, and
also that the angles AFG, AEG are equal

to the angles which the planes DAC, DAB -j-,

make with the plane DBC. But because -*^ ^
the spherical angles ACB, ABC are equal, the angles which the planes

DAC, DAB make with the plane DBC are equal (3. def.), and therefore

the angles AFG, AEG are also equal. The triangles AGE, AGF have

therefore two angles of the one equal to two angles of the other, and they

have also the side AG common, wherefore they are equal, and the side AF
is equal to the side AE.

Again, because the triangles ADF, ADE are right angled at F and E,
the squares of DF and FA are equal to the square of DA, that is, to the

squares of DE and DA ; now, the square of AF is equal to the square of

AE, therefore the square of DF is equal to the square of DE, and the side

DF to the side DE. Therefore, in the triangles DAF, DAE, because DF
is equal to DE and DA common, and also AF equal to AE, the angle

ADF is equal to the angle ADE ; therefore also the arcs AC. and AB,
which are the measures of the angles ADF, and ADE, are equal to one
another

; and the triangle ABC is isosceles.

PROP. VII.

Any two sides of a spherical triangle are greater than the third.

Let ABC be a spherical triangle, any two sides AB, BC are greater than
me third side AC.
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Let D be the centre of the sphere

;

join DA, DB, DC.
The solid angle at D is contained hf

three plane angles ADB, ADC, BDC

;

any two of which, ADB, BDC are

greater (20. 2. Sup.) than the third

ADC ; and therefure any two of the

arcs AB, AC, BC, which aieasore

these angles, as AB and BC must also

be greater than the third AC.

PROP. vm.

The tiret ttdes ofa spkerieal triamgU or* lest Ukm Ute etratmftremct tj m
grtat circle.

Let ABC be a spherical triangle as before, the three sides AB, DC, AC
are less than the circumference of a great circle.

Let D be the centre of the sphere : The solid angle at D is contained

by 'three plane angles BDA, BDC, ADC, which together are less than

four right angles (21.2. Sup.) therefore the sides AB, BC, AC, which are

the measures of these anrles, are together less than four quadrants describ-

ed with the radius AD, that is, than the circumference of a great circle.

PROP. IX.

Im a spJurieal triamgU tkt greater angle it opfotite to the greater tide ; and
comverteljf.

Let ABC be a spherical triangle, the greater angle A is opposed to the

greater side BC.
Let the angle BAD be made equal

to the angle B, and then BD, DA will

be equal (6.), and therefore AD, DC
are equal to BC ; but AD, DC are

greater than AC (7.), therefore BC is

greater than AC, that is, the greater

angle A is opposite to the greater ^de
BC. The converse is demonstrated as

Prop. 19. 1. Elem.

PROP. X.

According as the sum oftvo ofthe tides ofa spherical triangle, is greater thtm^

a semicircle, equal to it, or less, each ofthe interior angles at the base isgreats

than the exterior and opposite angle at the base, equal to it, or less ; and also

the turn of the two interior angles at the base greater than two right angles,

equal to two right angles, or less than two right angles.

Let ABC be a spherical triangle, of which the sides are AB and BC,
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produce any of the two sides as AB, and the base AC, till they meet again
in D ; then, the arc ABD is a semicircle, and the spherical angles at A
and D are equal, because each of them is the inclination of the circle ABD
to the circle ACD.

1. If AB, BC be equal to a g
semicircle,thatis, to AD, BCwill

"

be equal to BD, and therefore (5.)

the angle D, or the angle A, will

be equal to the angle BCD, that

is, the interior angle at the base

equal to the exterior and oppo- ^,
site. ^

2. If AB, BC together be greater than a semicircle, thai is, greater than

ABD, BC will be greater than BD ; and therefore (9.), the angle D, that

is, the angle A, is greater than the an^le BCD.
3. In the same manner it is shewn, if AB, BC together be less than a

semicircle, that the angle A is less than the angle BCD.
Now, since the angles BCD, BCA are equal to two right angles, if the

angle A be greater than BCD, A and ACB together will be greater than

two right angles. If A be equal to BCD, A and ACB together, will be

equal to two right angles ; and if A be less than BCD, A and ACB will

be less than two right angles.

PROP. XL

If the angular points of a spherical triangle he made the poles of three great

circles, these three circles by their intersections willform a triangle, which

is said to he supplemental to the formers and the two triangles are such,

that the sides of the one are the supplements of the arcs which measure the

angles of the other. '

Let ABC be a spherical triangle ; and from the points A, B, and C as

poles, let the great circles FE, ED, DF be described, intersecting one an-

other in F, D and E ; the sides of the triangle FED are the supplement of

the measures of the angles A, B, C, viz. FE of the angle BAC, ipE of the

angle ABC, and DF of the angle ACB : And again, AC is the supplement

of the angle DFE, AB of the angle FED, and BC of the angle EDF.
Let AB produced meet DE, EF in G, M

;

let AC meet FD, FE in K, L ; and let BC
meet FD, DE in N, H.

Since A is the pole of FE, and the circle

AC passes through A, EF will pass through
the pole of AC (1. Cor. 4.) and since AC
{passes through C, the pole of FD, FD will
*pass through the pole of AC ; therefore the
pole of AC is in the point F, in which the
arcs DF, EF intersect each other. In the
same manner, D is the pole of BC, and E
:he pole of AB.

And since F, E are the poles of AL, AM, the arcs FL and EM (2.) are
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quadrants, and PL, EM together, that is, FE and ML together, are equal
to a semicircle. But sinpe A is the pole of ML, ML is the measure of the

angle BAG (3.), consequently FE is the supplement of the measure of the
angle BAG. In the same manner, ED, DF are the supplements of the

incasiires of the angles ABC, BCA.
Since likewise GN, BH are quadrants, CN and BH together, that is.

Nil and BG together, are equal to a semicircle ; and since D is the pole of

NIL, NH is the measure of the angle FDE, therefore the measure of the

angle FDE is the supplement of the side BC. In the same manner, it is

shewn that the measures of the angles DEF, EFD are the supplements
of the sides AB, AC in the triangle ABC.

PROP. XII.

The three angles of a spherical triangle are greater than (too, and Use than nx,
right angles.

The measure of the angles A, B, C, in the triangle ABC, together with
the three sides of the supplemental triangle DEF, are (11.) equal to three

semicircles ; but the three sides of the triangle FDE, are (8.) less than two
semicircles ; therefore the measures of the angles A, B, C, are greater than
a semicircle ; and hence the angles A, B, C are greater than two right

angles.

And because the interior angles of any triangle, together with the exte-

rior, are equal to six right angles, the interior alone are less than six right

angles.

PROP. XUL

If to the cireumferenee ofa great circle,from a point in the swfaee ofthe spMere^
which is not the pole ofthat circle, arcs ofgreat circles be drawn ; the greatest

tf these arcs is that which passes through the pole of the frst'mentioned cir-

cle, and the stipplement of it is the least ; and of the other arcs, that whtch is

nearer to the greatest is greater than that which is more remote.

Let ADB be the circumference of a great circle, of which the pole is 11,

and let C be any other point ; through C and II let the semicircle ACB \i»

drawn meeting the circle ADB in A and B ; and let the arcs CD, GE, GF
also be described. From G draw GG perpendicular to .\B, aud then, be-

cause the circle AHGB which passes

through H, the pole of the circle ADU,
is at right angles to ADB, GG is per-

pendicular to the plane ADD. join
GD, GE, GF, GA, CD. GE, GF, CD.

Because .\B is the diameter of the

circle ADB, and G a point in it, which
19 not the centre, (for the centre is ii

the jwinl where the perpendicular from
H meets A B), therefore AG, the part

of the diameter in which the centre is
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is the greatest (7. 3.), and GB the least of all the straight lines that can be
drawn from G to the circumference ; and GD, which is nearer to AB, is

greater than GE, which is more remote. But the triangles CGA, CGD
are right angled at G, and therefore AC2=AG2+GC2, and DC2=DG2+
GC2; but AG2+GC27DG2+GC2; because AG/DG; therefore AC»
7DC2^ and AC /DC. And because the chord AC is greater than the
chord DC, the arc AC is greater than the arc DC. In the same manner,
since GD is greater than GE, and GE than GF, it is shewn that CD is

greater than CE, and CE than CF. Wherefore also the arc CD is greater
than the arc CE, and the arc GE greater than the arc CF, and CF than
CB, that is, of all the arcs of greater circles drawn from C to the circum-
ference of the circle ADB, AC which passes through the pole H, is the
greatest, and CB its supplsment is the least ; and of the others, that which
is nearer to AC the greatest, is greater than that which is more remote.

PROP. XIV.

In a right angled spherical triangle, the sides containing the right angle are o,

the same affection with the angles opposite to them, that is, if the sides be
greater or less than quadrants, the opposite angles will be greater or less than
right angles, and conversely.

juet ABC be a spherical triangle, right angled at A, any side AB will
be of the same affection with the opposite angle ACB.

Produce the arcs AC, AB, till they meet again in D, and bisect AD in
E. Then ACD, ABD are semicircles, and AE an arc of 90°. Also, be-
cause CAB is by hypothesis a right angle, the plane of the circle ABD is
perpendicular to the plane of the

circle ACD, so that the pole of
ACp is in ABD, (1. Cor. 4.),

and is therefore the point E. Let
EC be an arc of a great circle

passing through E and C.
Then because E is the pole of

the circle ACD, EC is a (2.)

quadrant, and the plane of the
circle EC (4.) is at right angles
to the plane of the circle ACD,
that is, the spherical angle ACE
is a right angle ; and therefore,

when AB is less than AE, the
angle ACB, being less than
ACE, is less than a right angle.

But when AB is greater than
AE, tlie angle ACB is gi-eater

than ACE, or than a right an-
gle. In the same way may the

converse be demonstrated.
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PROP. XV.

If the two tides ofa right angUd spherical triangle about the right angle he oj

the same affection^ the hypotenuse will be lets tUtm a quadroMt ; and ifthey be

of different affection, the hypotenuse wili begreater tkam a quadrant.

Let ABC b« a right angled spherical triangle ; according aa the two
•id<« AB, AC are of the same or of difTerent affection, the hypotenuse BC
If ii\ be less, or greater than a quadrant.

The construction of the last proposition remaining, biaect the •emicircle

ACD in G, then AG will be an arc of 90^, and G will be the pole of the

circle ABD. ,

1. Let AB, AC be each less than 90^. Then, because C is a point on
the surface of the sphere, which is not the pole of the circle ABD, the arc

CGO, which passes through G the pole of ABD is greater than CE (13.),

and CE greater than CB. But CE is a quadrant, aa was before shewn,
therefore CB u less than a quadrant Thus also it is proTed of the right

angled triangle CDB, (right-angled at D), in which each of the sides CD,
DI3 is greater than a quadrant, that the hypotenuse BC is less than a
quadrant.

2. Let AC be leas, and AB greater than QO^^. Then because CB falls

between CGD and CE, it is greater (12.) than CB, that is, than a quad-

lanL

Coa. 1. Hence oooTersely, if the hypotenuse of a right angled triangle

t>e greater or leas than a quadrant, the aidee will be of different or the same
affection.

Cor. 2. Since ( 1 4.) the oblique angles of a right angl(^d spherical trian-

gle hare the same affection with the opposite sides, therefore, according as

the hypotenuse is greater or leas than a quadrant, the oblique angles will

be different, or of the same affection.

Cor. 3. Because the sides are of the same affection with the opposite

angles, therefore when an angle and the aide adjacent are of the same affec

lion, the hypotenuse is less than a qtiadrant : and conversely.

PROP. XVI.

In any spherical triangle, ifthe perpendicular upon the base from the opposite

angle fall within the triangle, the angles at th^ base are of the same affection

;

and ifthe prrpendieularfall without the triangle, the angles at the base are of
different affection.

Let ABC he a spherical triangle, and let the arc CD be drawn from C
perpendicular To the base AB.

1. Let CD fall within the triangle ; then, since ADC, BDC are rii^U

angled spherical triangles, the angles A, B must each be of the same affec-

lion with CD (14.).
^ ' 32
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c

2. Let CD fall without the triangle ; then (14.) the angle B is of the

same affection with CD ; and the angle CAD is of the same affection with

CD ; therefore the angle CAD and B are of the same affection, and the

angle CAB and B are therefore of different affections.

CoR. Hence, if the angles A and B be of the same affection, the per-

pendicular will fall within the base ; for if it did not, A and B would be of

different affection. And if the angles A and B be of different affection,

the perpendicular will fall without the triangle ; for, if it did not, the angles

A and B would be of the same affection, contrary to the supposition.

PROP. XVII.

If to the base ofa spherical triangle a perpendicular be dravmfrom the opposite

angle, which eitherfalls within the triangle, or is the nearest of the two that

fall without; the least of the segments of the base is adjacent to the least of
the sides of the triangle, or to the greatest, according as the sum of the sides

is less or greater than a semicircle.

Let ABEF be a great circle of a sphere, H its pole, and GHD any cir-

cle passing through H, which therefore is perpendicular to the circle

ABEF. Let A and B be two points in the circle ABEF, on opposite

sides of the point D, and let D be nearer
to A than to B, and let C be any point
in the circle GHD between H and D.
Through the points A and C, B and C,
let the arcs AC and BC be drawn, and
let them be produced till they meet the
circle ABEF in the points E and F,
then the arcs ACE, BCF are semicir-
cles. Also ACB, ACF, CFE, ECB,
are four spherical triangles continued
by arcs of the same circles, and having
the same perpendiculars CD and CG.

I
.
Now because CE is nearer to the arc CHG than CB is, CE is greater

than CA, and therefore CE and CA are greater than CB and CA, where-
fore CB and CA are less than a semicircle ; but because AD is by sup-
Dosition less than DB, AC is also less than CB (13.), and therefore in this
case, VIZ. when the perpendicular falls within the triangle, and when the
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•am of the sides is less than a semicircle, the least segment isadjacetit to the

least side.

2. Again, in the triangle FCA the two sides FC and CA are less than

a semicircle ; for since AC is leas than CB, AC and CF are less than I3C

and CF. Also, AC is less than CF, because it is more remote from CHG
than CF is ; therefore in this case also, riz. when the perpendicular falls

without the triangle, and when the sum of the sides is leas than a semicir-

cle, the least segment of the base AD is adjacent to the leaat side.

3. But in the triangle FCE the two aides FC and CE are greater tlian

a semicircle ; for, since FC ia greater than CA, FC and CE are greater

than AC and CE. And because AC is less than CB, EC is greater than

CF, and EC is therefore nearer to the iwrpendicular CHG ihan CF is,

wherefore EG is the least segment of the base, and ia adjacent to the

greater side.

4. In the triangle ECB the two sides EC, CB ar« greater than a semi-

circle ; for, since by supposition CB ia greater than CA, EC and CB are

greater than EC and CA. Also, EC is greater than CB, wherefore in

this case, also, the least segment of the base EG is adjacent to the greatest

side of the triangle. Therefore, when the sum of the sides is greater than
a semicircle, the least segment of the base is adjacent to the greatest aide,

whether the perpendicular fall within or without the triangle : and it haa
been ahewn, that when the sum of the sides is less than a aemicircle, the

leaat aegment of the base ia adjacent to the least of the aidee, whether the

perpendicular fall within or without the triangle.

PROP. XVIII.

in right angUd spherical triangles, the sine ofeither of the sides about the rtgiH

angle, is to the radius of the sphere, as the tangent of the remaining side is

to the tangent of the angle opposite to that side.

Let ABC be a triangle, having ihe right angle at A ; and let AB be
either of the sides, the sine of ilie side AB will be to the radius, as the tan-

gent of the other side AC to tlie tangent of the angle ABC, opposite to AC.
Let D be the centre of the sphere ; join AO, BD, CD, and let AF be drawn
perpendicular to BD, which therefore will be the sine of the arc AB, and
from the point F, let there be drawn in the plane BDC the straight line

FE at right angles to BD, meeting DC in

E, and let A E be joined. Since therefore

the straight line DB is at right angles to

both FA and FE, it will aUo be at right

angles to the plane ACF (4. 2. Sup.)
;

wherefore the plane ABD, which passes

through DF, is perpendicular to the plane

AEF (17. 2. Sup.), and the plane AEF
perpendicular to ABD: But the plane

ACD or AED, is also perpendicular to

the same ABD, because the spherical an-

gle B.\C is a right angle . Therefore \E,
the common section of the planes AED,
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AEF, is at right angles to the plane ABD (18. 2. Sup.), and EAF, EAD
are right angles. Therefore AE is the tangent of the arc AC ; and in the

rectilineal triangle AEF, having a right angle at A, AF is to the radius as

AE to the tangent of the angle AFE (1. PI. Tr.) ; but AF is the sine of

the arc AB, and AE the tangent of the arc AC ; and the angle AFE is

the inclination of the planes CBD, ABD (4. def. 2. Sup.), or is equal to the

spherical angle ABC : Therefore the sine of the arc AB is to the radius as

the tangent of the arc AC to the tangent of the opposite angle ABC.

CoR. Since by this proposition, sin. AB : R : : tan. AC : tan. ABC
;

and because R : cot. ABC : : tan. ABC : R (1 Cor. def. 9. PI. Tr.) by

equality, sin. AB : cot. ABC : : tan. AC : R.

PROP. XIX.

[n right angled spherical triangles the sine of the hypotenuse ts to the radius as

the sine of either side is to the sine ofthe angle opposite to that side.

Let the triangle ABC be right angled at A, and let AC be either of the

sides ; the sine of the hypotenuse BC will be to the radius as the sine of

the arc AC is to the sine of the angle ABC.
Let D be the centre of the sphere, and let CE be drawn perpendicular

to DB, which will therefore be the sine of the hypotenuse BC ; and from

the point E let there be drawn in the

plane ABD the straight line EF per-

pendicular to DB, and let CF be joined

;

then CF will be at right angles to the

plane ABD, because as was shewn of

EA in. the preceding proposition, it is

the common section oftwo planes DCF,
EOF, each perpendicular to the plane

ADB. Wherefore CFD, CFE are right

angles, and CF is the sine of the arc

AC ; and in the triangle CFE having
"

the right angle CFE, CE is to the radius, as CF to the sine of the angle

CEF (1. PI. Tr.). But, since CE, FE are at right angles to DEB, which
is the common section of the planes CBD, ABD, the angle CEF is equal

to the inclination of these planes (4. def. 2. Sup.), that is, to the spherical

angle ABC. Therefore the sine of the hypotenuse CB, is to the radius, as

the sine of the side AC to the sine of the opposite angle ABO

PROP. XX.

In right angled spherical triangles, the cosine of the hypotenuse is to the radius

as the cotangent of either of the angles is to the tangent of the remaining

angle.

Let ABC be a spherical triangle, having a right angle at A, the cosine

of the hypotenuse BC is to the radius as the cotangent of the angle ABC
to the tangent of the angle ACB
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Describe the circle DE, of which B is the pole, and let it meet AC ia

f and the circle BC in £ ; and since the circle BD pases through the

pole B, of the circle DF, DF mtut pass through the pole of BD (4.). An
since AC is perpendicular to BD, the plane of the circle AC is perpendi

cular to the plane of the circle BAD, and therefore AC must also (4.) pass

through the pole of BAD ; wherefore, the pole of the circle BAD is in the

point K, where the circles AC, DE, intersect. The arcs FA, FD are

therefore quadrants, and likewise the arcs BD, BE. Therefore, in the tri-

angle CEF, right angled at the point E, CE is the complement of BC, ih^

hypotenuse of the triangle ABC ; EF is the complement of the arc ED,
the measure of the angle ABC, and FC, the hypotenuse of the triangle

CEF, is the complement of AC, and the arc AD, which is the measure of

the angle CFE, is the complement of AB.
, ,

But (18.) in the triangle CEF, sin- CE : R : : tan. EF : tan. ECF, that

is, in the mangle ACB, cos. BC : H : : cot. AKC : tan. ACB.

Cor. Because cos. BC : R : : cot ABC : tan. ACB, and (Cor. 1. def. 9.

PI. Tr.) cot. ABC : R : : R : Un. ABC, ex squo. cot ACB : cos. BC : : R
: cot. ABC.

PROP. XXI.
«

/m right angled sphtrietd triangles, the eoaine of an angle i* to the radius as th»

tangent ofthe side adjacent to that angle is to the tangent ofthe hypotenuse

The same construction remaining ; In the triangle CEF, sin. FE : R :

.

tan. CE : tan. CFE (18.): butsin. EF=co8. ABC ; tan.CE=cot. BC.and
un. CFE=cot. AB, therefore cos. ABC : R : : cot. BC : cot. AB. Now
because (Cor. 1. def. 9. PI. Tr.) cot. BC : R : : R : ton. BC, and cot. AB :

R : : R : tan. AB, by equality ioTerscly, cot BC : cot. AB : tan. .\B :

BC ; therefore (11. 5.) coe. ABC : R : : tan. AB : tan. BC.

CoR. 1. From the demonstration it is manifest, that the tangents of any

two arcs AB, BC are reciprocally proportional to their cotongents.
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Cor. 2 Because cos. ABC : R : : tan. AB : tan. BC, and R : cos. BC :

:

tan. BC : R, by equality, cos. ABC : cot. BC : : tan. AB : R. That is, the

cosine of any of the oblique angles is to the cotangent of the hypotenuse,

as the tangent of the side adjacent to the angle is to the radius.

PROP. XXII.

In right angled spherical triangles, the cosine of either of the sides is to the ra-

dius, as the cosine ofthe hypotenuse is to the cosine ofthe other side.

The same construction remaining : In the triangle CEF, sin. CF : R :

:

sin. CE : sin. CFE (19.) ; but sin. CF=cos. CA, sin. CE=cos. BC, and

sin. CFE=cos. AB ; therefore cos. CA : R : : cos. BC : cos. AB.

PROP. XXIII.

In right angled spherical triangles, the cosine of either of the sides is to the ra-

dius, as the cosine of the angle opposite to that side is to the sine of the other

angle.

The same construction remaining : In the triangle CEF, sin. CF : R : :

sin. EF : sin. ECF (19.) ; but sin. CF= cos. CA, sin. EF=cos. ABC, and

sin. ECF=sin. BCA :^ therefore, cos. CA : R : : cos. ABC : sin. BCA.

PROP. XXIV.

In spherical triangles, whether right angled or ohlique angled, the sines of the

sides are proportional to the sines of the angles opposite to them.

First, let ABC be a right angled triangle, having a right angle at A ;

herefore (19. j tne sine of the hypotenuse BC is to the radius, (or the sine
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of the rigbt angle at A), as the sine of

the side AC to the sine of the angle B.

And, in like manner, the sine of BC is

to tiie sine of the angle A, as the sine

of AB to tlie sine of the angle C

;

wherefore (11. 5.) the sine of the side

AC is to the sine of the angle B, as the

sine of A B to the sine of the angle C.

Secondly, Let ABC be an oblique angled triangle, the sine of any of the

sides BC will be to the sine of any of the other two AC, as the sine of the

angle A opposite to BC, is to the sine of the angle B opposite to AC.
Through the point C, let there be drawn an arc of a groat circle CD per-

pendicular to AB ; and in the right angled triangle BCD, sin. BC : U :

:

sin. CD : sin. B (19.) ; and in the triangle ADC, sin. AC : R : : sin. CD

:

sin. A ; wherefore, by equality inversely, sin. BC : sin. AC : : sin. A : sin.

B. In the same manner, it maybe proved that sin. BC : sin. AB : : sin.

A : sin. C, iic.

PROP. XX\.

In oblique angled spherieal triangles, a perpendicular arc being drawn jrom
any of the angles upon the opposite side, the costnes of the angles at the bas0

are proportional to the sines of the segments of the vertical angle.

Let .\BC be a triangle, and the arc CD perpendicular to the base BA ,

the cosine of the angle B will he to the cosine of the angle A, as the sine

of the angle BCD to the sine of the angle ACD.
For having drawn CD perpendicular to AB, in the right angled triangle

BCD (23), COS. CD : R : : cos. B : sin. DCB ; and in the right angled

triangle ACD, cos. CD : R : : cos. A : sin. ACD ; therefore (11. 5.) cos.

B : sin. DCB : : cos. A : sin. ACD, and alternately, cos. B * cos. A : : sin.

BCD : sin. ACD.

PROP. XXVI.

The same things remaining, the cosines of the sides BC, CA, areproportiona

to the cosines o/"BD, DA, the segments of the base.

For in the triangie BCD (22.), cos. BC : cos. BD : : cos. DC : R, and in
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the triangle ACD, cos. AC : cos. AD : : cos. DC : R ; therefore (11. 5.V

COS. BC : cos. BD : : cos. AC : cos. AD, and alternately, cos. BC : cos '

AC : : COS. BD : cos. AD.
t

PROP. XXVII.
'

The same construction remaining, the sines o/BD, DA, the segments of th»
^

base are reciprocally proportional to the tangents ofQ and A, the angles

at the base.

In the triangleBCD (18.), sin. BD : R : : tan. DC : tan. B ; and in the

triangle ACD, sin. AD : R : : tan. DC : tan. A ; therefore, by equality in-,

versely sin. BD : sin. AD : : tan. A ; tan. B.

PROP. XXVIII.

The same construction remaining, the cosines of the segments of the vertical

angle are reciprocally proportional to the tangents of the sides.

Because (21.), cos. BCD : R : : tan. CD : tan. BC, and also cos. ACD
R : : tan. CD : tan. AC, by equality inversely, cos. BCD ; cos. ACD :

:

tan. AC : tan. BC.

PROP. XXIX.

Iffrom an angle of a spherical triangle there be drawn a perpendicular to the

opposite side, or base, the rectangle contained by the tangents of half the

sum, and of half the difference of the segments of the base is equal to the

rectangles contained by the tangents of half the sum, and of half the diffe-

rence of the two sides of the triangle.

Let ABC be a spherical triangle, and let the arc CD be drawn from the

angle C at right angles to the base AB, tan. ^ (tti+ti) Xtan. i {m—n)=l
tan. (cp-f /?») X 1 tan. {a—b).

Let BC=a, AC=5 ; BD=m, AD=n. Because (26.) cos. a : cos. b : :

cos.m: COS. n(E. 5.), cos. a-\-b : cos. a— cos. b : : cos. m+cos. n : cos. m

—

cos. n. But (1. Cor. 3. PI. Trig.), cos. a-f-cos. b : cos. a— cos. b : : cot. ^
(a+J) : tan. ^ (a—b), and also, cos. ot+cos. n : cos. ot— cos. n : : cot. |
(m-\-n) : tan. ^ {m—n). Therefore, (11. 5.) cot. ^ {a+b) : tan. -1 {a—b)
: . cot. ^ (m+ n) : tan. ^ {m—n). And because rectangles of the same al-
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titude are as their bases, tan. \ {a-\-b)XcoL \ (a+&) : tan. \ (<i-f-ft)Xtan.

k (a—b) :: tan. | (in+n)x col. ^ (w+n) : tan. ^ (mX>i)-f tan. ^(m—n).
Kow the first and third terms of this proportion are equal, being eacn equa
to the square of the radius (1. Cor. PI. Trig.), therefore the remaining twc
are equal (9. 5.), or tan. i(fii+n)xtan. ^(m—n)=tan. ^ (a+^) xtan. i
(a-b) ; that is, tan. i (BD+AD)xtan. 4 (BD—AD)s=tan. i (BC+AC)
Xtan. ^(BC-AC).

CoR. I. Because the sides of equal rectangles are reciprocally propor>

donal, tan. 4 (BD+AD) : Un. i (BC+AC) : : tan. 1 (BC — AC) : tan. 4
rBD-AD).

CoR. 2. Since, when the perpendicular CD fills within the triangle,

BD+AD=AB, the base ; and when CD falls without the triangle BD—
ADssAB, therefore, in the first case, the proportion in the last corollary

becomes Un. J (AB) : tan. J(BC-f AC) :: tan.J(BC—AC) : tan.i(BD—
A D) ; and in the second case, it becomes by inversion and alternation, taik

I (AB) : tan. ^ (BC+AC) : : tan. ^ (BC-AC) : tan. ^ (BD+AD).

SCHOLIUM.

The preceding proposition, which is very useful in spherical trigonome

try, may be easily remembered from its analogy to the proposition in plane

trigonometry, that the rectangle under half the sum, and half the dilfcrence

of the sides of a plane triangle, is equal to the rectangle under half the

sum, and half the aiflerence of the segments of the base. See (K. 6.), also

4th Case PI. Tr. We are indebted to Napier for this and the two follow-

ing theorems, which are so well adapted to calculation by Logarithms,

that they must be considered as three of the most valuable propositions in

Trigonometry.

33
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PROP. XXX.

If a perpendicular he drawn from an angle of a spherical triangle to the oppo-

site side or base, the sine of the sum of the angles at the base is to the sine

of their difference as the tangent of half the base to the tangent of half the

difference of its segments, when the perpendicular falls within; but as the

co-tangent of halfthe base to the co-tangent of half the sum oj the segments^

when theperpendicularfalls without the triangle: And the sine of the sum

of the two sides is to the sine of their difference as the co-tangent of half

the angle contained by the sides, to the tangent of half the difference of
the angles which the perpendicular makes with the same sides when it falls

xmthin, or to the tangent of half the sum of these angles, when it falls with-

out the triangle.

If ABC be a spherical triangle, and AD a perpendicular to the base BC,
sin. (C+B) : sin. (C—B) : : tan. A BC : tan. \ (BD—DC), when AD falls

within the triangle ; but sin. (C+ B) : sin. (C—B) : : cot. ^ BC : cot. \
(BD+DC), when AD falls without. And again.

sin. (AB+AC) : sin. (AB—AC) : : cot. ^ BAC : tan. i (BAD—CAD),
when AD falls within ; but when AD falls without the triangle,

sin. (AB+AC) : sin. (AB—AC) : : cot. \ BAC : tan. \ (BAD+ CAD).
For in the triangle BAC (27.), tan. B : tan. C : : sin. CD : sin. BD, and

therefore (E. 5.), tan. C+ tan. B : tan. C—tan. B : : sin. BD+ sin. CD :

sin. BD— sin. CD. Now (by the annexed Lemma), tan. C+ tan. B : tan.

C—tan. B : : sin. (C+B) : sin. (C—B), and sin. BD+sin. CD : sin. BD
—sin. CD : : tan. \ (BD+CD) : tan. \ (BD—CD), (3. PI. Trig.), there-

fore, because ratios which are equal to the same ratio are equal to one

another (11. 5.), sin. (C+B) : sin. (C—B) : : tan. -| (BD+CD) : tan. \
(BD—CD).



SPHERICAL TRIGONOMETRY. 25*

Now tvhen AD is within the triangle, BD4-CD=rBC, and therefore sin.

(C4-B) : sin. (C— B) : : tan. J BC : un. J (BU—CD). And again, when
AD is without the triangle, BD—CDssBC, and therefore sin. (C+B) : «in.

(C— B) : : Ian. if (BD+CD) : tan. ^ BC, or because the tangents of any
two arcs are reciprocally as their co-tangents, in (C^-B) : sin. (C—B) :':

cot.J BC :cot. i(BD-fCP).
The second part of the proposition is next to be demonstrated. BecauHa

(28.) tan. AB : tan. AC : : cos. CAD : cos. BAD, tan. AB-)-tan. AC : tan.

AB—tan. AC :: cos. CAD+cos. BAD : cos. CAD—cos. BAD. But
(Lemrna) tan. AB+tan. AC : Un. AB—Un. AC : : sin. (AB+AC) : sin.

(AB— AC),and (1. cor. 3. PI. Trig.) cos. CAD+cos. BAD : cos. C\D—
cos. BAD : : cot. 1 (BAD+CAD) : Un. \ (BAD-GAD). Therefore (U.
5.) sin. (AB+AC) : sin. (AB—AC) : : cot. ^ (BAD-f-CAD) : tan. \ (BAD
—CAD). Now, when AD is within the triangle, BAD+CADasBAC,
and therefore sin. (AB+AC) : sin.(AB—AC) : : cot 4 BAC : tan. 1 (BAD
-CAD.)
But if AD be without the triangle, BAD—CADsBAC, and therefore

•in. (AB+AC) : sin. (AB—AC) : :

cot. \ (BAD+CAD) : tan. \ BAC ; or because

cot. I (BAD+CAD) : tan. 1 BAC : : cot. \ BAC :

tsn. 1 (BAD+CAD), sin. (AB+AC) : sin. (AB-AC) : : coL 4 BAC :

tan. I (BAD-fCAD).

LEMMA.

7^ *i««i of the tangents of any two ares, is to the difftrenee of their tangtnia^

as the sine of the sum of the ares, to the sine of their difference.

Let A and B be two arcs, tan. A-f-tan. B : tan. A— tan. B : : sin. (A+B)
: (A-B).

For, by §6. page 232, sin. A X cos. B-f cos. A Xsin. B=sin. (A+ B), and

V r I -i- II i_ 4 „ sin. A
,
sin. B sin. (A+ B) ,

therefore mvidingall by cos. A cos. B, -f -xa ——. thai
* '

'cos. A cos. B cos. Axcos.B'
. sin. A ^ . ^ . , _ sin. (A-j-B) - .

IS, because r stan. A, tan. A+tan. B= ^^

—

-—-sr. In the same
COS. A cos. A X COS. B

manner it w proved that tan. A —tan. B= '

•

~~
'-rz. Therefore tan. A

COS. A X COS. B
4-tan. B : tan. A—tan. B : : sin. (A-f B) : sin. (A— B).

PROP. XXXI.

The sine of half the sum ofany ttco angles ofa spherical triangle is to ir\»

sine of half their difference, as the tangent of half the side adjacent to these

angles is to the tangent of half the difference of the sides opposite to them ;

and the cosine of half the sum of the same angles is to the cosine of half
their difference, as the tangent ofhalf the tide adjacent to them, to the tan'

gent ofhalf the sum of the sides opposite.

Let C-fB=2S, C—B=2D, the base BCs2B, and the difference ot
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the segments of the base, or BD—CD=2X. Then, because (30.) sm
(e+B) : sin. (C— B) : : tan. ^ BC : tan. ^ (BD—CD), sin. 2S : sin. 2D
: : tan. B : tan. X. Now, sin. 2S=sin. (S+S)=2 sin. Sx cos. S, (Sect.

III. cor. PL Tr.). In the same manner, sin. 2D=2 sin. Dxcos. D
Therefore sin. S X cos. S : sin. D X cos. D : : tan. B : tan. X

Again, in the spherical triangle ABC it has been proved, that sin, C+
sm. B : sin. C—sin. B : : sin. AB+sin. AC : sin. AB— sin. AC, and since

sin. C+sin. B=2 sin. ^ (C+B)+cos. ^ (C-B), (Sect. III. 7. PI. Tr.)=
2 sin. Sxcos. D; and sin. C— sin. B=2 cos. ^ (C-fB)Xsin.^ (C—B)=s
2 cos. S X sin. D. Therefore 2 sin. S X cos. D : 2 cos. S X sin. D : : sin.

AB+sin. AC : sin. AB—sin. AC. But (3. PI. Tr.) sin. AB+sin. AC :

sin. AB— sin. AC : : tan. ^ (AB+AC) : tan. ^ (AB—AC) : : tan. 2 : tan.

J, 2 being equal to \ (AB+AC) and ^ to ^ (AB—AC). Therefore sin.

S X cos. D : COS. S X sin. D : : tan. 2 : tan. ^. Since then —'-rr- =
tan. B

sin. D X COS. D , tan. ^ cos. S X sin. D , i . , • i .-—^ ^ ; and -=-.—r; =r, by multiplymg equals by
sm. S X cos. S tan. 2 sm. S X cos. D "^

'

f / & ^ /

. tan. X tan. .^_(sin. D)^ x cos. S X cos. D_ (sin. D)'^
^^"^ ^'

tan. B^tanr^~(sin. S)2xcos. Sxcos. D~(sin. S)^'

But foQ \
^^"- ^ (BD-DC)_ tan. ^(AB+ AC) tan. X_tan. 2

^""^ ^^^'^
tan. ^ (AB-AC)- tan. ^ BC '

^^^^
'"' u;^""tan. B'

J , . tan. X tan. .2" X tan. .ii , tan. X tan. ^ tan. ^
and therefore, ^=— ^-r-—, as also

tan. B (tan. B)* ' tan. B tan. 2 (tan. B)^

^ tan. X tan^_(sinJD)2 (tan. df _{?,m. T)f tan, d
tan. B tan. 2 (sm. S)2

'

(tan. B)2 (sm. S)2 tan. B

=-^-—^, or sin. S : sin. D : : tan. B : tan. J, that is, sin. (C+B) : sin.
sm. S > ' V • /

(C—B) : : tan. \ BC : tan. \ (AB—AC) ; which is the first part of the

... tan. ^ cos. Sxsin. D . , tan. .2"

proposition. Again, since =-.—;- =-, or inversely -=
^ ^ ^

tan. 2 sin. S X cos. D ^ tan. ^
sin. Sxcos. D , . tan. X sin. Dxcos. D , . , , . ,.^-—:—^ ; and since r^=-.—f^ ^ ; therefore by multipli-
cos. Sxsin. D tan. B sin. Dxcos. S' "' *

tan. X tan. 2 (cos. DP
cation. ::^X———=^ -.

'tan. B tan d (cos. S)*
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^ . , , , , tan. X tan. 2 x tan. .J ^ ,
But It waa already shewn that =:»—; =7—— , wherefore also^

tan. B (tan. B)>

tan. X ton. .r_(ton. 2")'

tan. B^tan. ^~(ian. tif
-- tan. X tan. .T (cos. D)> , . , .
Now, jj X: -=- ^, as has just been shewn.

tan. B tan. ^ (cos. S)^
'

_ . (cos D)» (tan. 2)« . , cos. D tan. 2
Therefore -. c«=/: n^i***^ consequently 5=: 5-, 01 co#.

(cos. S)» (tan. B)* ^ ^ cos. S tan. B
S : COS. D : : tan. B : tan. .7, that is, coe. (C-f-B) : cos. (C—B) : : tan. |
BC : tan. ^ (C+B) ; which is the second part of the proposition.

Ck>K. 1. Br applying this proposition to the triangle supplemental to

ABC (11.) and by considering, that the sine of half the sum or half the

difference of the supplements of two arcs, is the same with the sine of half

the sum or half the difference of the arcs themselves : and that the same
is true of the cosines, and of the tangents of half the sum or half the dif-

ference of the supplements of two arcs : but that the tangent of half the

supplement of an arc is the same with the cotangent of half the arc itself;

it will follow, that the sine of half the sum of any two sides of a spherical

triangle, is to the sine of half their difference as the coungent of half the

an^ contained between them, to the tangent of half the difference of the

ui^ea oi^xmte to them : and also that the cosine of half the sum of these

ides, is to the coeine of half their difference, as the cotangent of half the

angle contained between them, to the tangent of half the turn of the angles

opposite to them.

Cot. 2. If therefore A, B, C, be the three angles of a spherical txian*

gle, a, b, e the sides opposite to them,

I. sin. 1 (A+B) : sin. I (A-B) : : tan. 1 c : tan. i {o—h).
II. cos.

,

(A+B) : COS. 1 (A~B) : : tan. X c : tan. X (a+&).
III. sin. (a+6) : sin. i (a-&) : : tan. i C : tan. 4 (A—B).
IV. COS. { (a+6) : cos. \ (a-^b) : : tan. } C : tan. | (A-f B).
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PROBLEM I.

In a right angled spherical triangle, of the three sides and three ansks, any

two being given, besides the right angle, to jind the other three.

This problem has sixteen cases, the solutions of which are contained

in the following table, where ABC is any spherical triangle right angled

at A.

GIVEN. SOUGHT. SOLUTION.

BC and B.

AC.
AB.
C.

R : sin BC : : sin B : sin AC, (19).

R : cos B : : tan BC : tan AB, (21).

R : cos BC : : tan B : cot C, (20).

1

2

3

AC and C»,

AB.
BC.
B.

R : sin AC : : tan C : tan AB, (18).

cos C : R : : tan AC : tan BC, (21).

R : cos AC : : sin C : cos B, (23).

4

5

6

AC and B.

AB.
BC.
C.

tan B : tan AC : : R : sin AB, (18).

sin B : sin AC : : R : sin BC, (19).

cos AC : cos B : : R : sin C, (23).

7
8

9

AC and BC.
AB.
B.

C.

cos AC : cos BC : : R : cos AB, (22).

sin BC : sin AC : : R : sin B, (19).

tan BC : tan AC : : R : cos C, (21).

10

11

12

AB and AC.
BC.
B.

C.

R : cos AB : : cos AC : cos BC, (22).

sin AB : R : : tan AC : tan B, (18).

sin AC : R : : tan AB : tan C, (18).

13

14

14

B and C.

AB.
AC.
BC.

sin B : cos C : : R : cos AB, (23).

sin C : cos B : : R : cos AC, (23).

tan B : cot C : : R : cos BC, (20).

15

15

16
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T vBLE for determiaing the affections of the Sides and Angles found bf
the preceding rules.

AC and B of the same aflection. 1

If BC/ 90^, AB and B of the same affection, otherwise dif-

ferent, (Cor. 15.) 3

If BC/ 90°, C and B of the same affection, otherwiae diffe-

ren^ (16.) 3

AB and C are of the same affection, (14.) 4

If AC and C are of the same affection, BC^QO^ ; otherwise

BCZ90O, (Cor. 15.) 5

B and AC are of the same affection, (14.) 6

Ambiguous. 7

Ambiguous. 8
Ambiguous. 9

When BC^90°, AB and AC of the same ; otherwise of dif-

ferent affection, (15.|

AC and B of the same affection,
. (14.)

10

11

When BC^90°, AC and C of the same ; otherwise of dif-

ferent affection, (Cor. 15.) 12

BC^QO^', when AB and AC are of the same affection.

(1. Cor. 15.) 13

B and AC of the same affection, l\4.)

C and AB of the same affection, (14.)

14

14

AB and C of the same affection, (14.) 15

AC and B of the same affection, (14.) 15

When B and C are of the same affection, BC^90<>, other-

wise. BC79()o, (15.) 16

The cases marked ambiguous are those in which the thing sought liaa

two values, and may either be equal to a certain angle, or to the supple-

ment of that angle. Of these there are three, in all of which the things

given are a side, and the angle opposite to it ; and accordingly, it is easy to

shew that two rieht angled spherical triangles may always be found that

have a side and the angle opposite to it the same in both, but of which ^he

remaining sides, and the remaining angle of the one, are the supplements

of the remaining sides and the remaining angle of the other, each of each.

Though the affection of the arc or angle found may in all the other cases

be determined by the rules in the second of the preceding tables, it is of

use to remark, that all these rules except two, may be reduced to one, vix.

that when the thingfound by the rules in thefirst table is either a tangent or

a cosine ; and when, of the tangents or cosines employed in the computation of
it, one only belongs to an obtuse angle, the angle required is also obtuse
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Thus, in the 15th case, when cos AB is found, if C be an obtuse angle,

because of cos C, AB must be obtuse ; and in case 16, if either B or C be

obtuse, BC is greater than 90^, but if B and C are either both acute, or

both obtuse, BC is less than 90^.

It is evident, that this rule does not apply when that which is found is

the sine of an arc ; and this, besides the three ambiguous cases, happens

also in other two, viz. the 1st and 11th. The ambiguity is obviated, in

these two cases, by tliis rule, that the sides of a spherical right angled tri

angle are of the same affection with the opposite angles.

Two rules are therefore sufficient to remove the ambiguity in all the

cases of *he right angled triangle, in which it can possibly be removed.
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It may be useful to express the same solutions as in the annexed table.

Let A be at the right angle as in the figure, and let the side opposite to it

be a ; let 6 be the side opposite to B, and c the side opposite to C

•ITSM. •ODOBT. •oumoN.

1b. sin 6 = sin a X sin B.

a and B. e. tan e = tan a X cos B 2

C. cotC = COS a X tanB. 3

e. tan c a sin & X tan C. 4

&andC. m.
uab

tan a s p.-
cosC

5

B. co« B a cos 5 X sin C. 6

c.
tan b

sin c B -—=

.

unB
7

iand B. a.
sin b

sin a = -r—=:.
smB

8

C.
. _ cos BamCs J.cos 6

e.
cos a

sin e = r.
cos b

10

« and b. B.
. _ tin *

sin B s ~—

.

sin a
11

C. cos CB .

tan a
12

a. cos a Es cos b X cos c. 13

b and c B. tanB =-:—

.

sin e
14

C. tanCa-:—r.
ain •

14

e.
cosC

COSC =-: =.
sm B

15

B and C. b
cos B

CO«6 = -r—T^.
sin C

15

m.
cotC

cos a B •—-.
tanB

16

34
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PROBLEM II.

In any oblique angled spherical triangle, of the three sides and three angles,

any three being given, it is required tojind the other three.

In this Table the references (c. 4.), (c. 5.), &c. are to the cases in the

preceding Table, (16.), (27.), &c. to the propositions in Spherical Trigo-

nometry.

GIVEN. SOUGHT. SOLUTION.

1

Two sides

AB, AC,

9.nd the in-

2 eluded angle

A."

One of the

other angles

B.

Let fall the perpendicular CD from
the unknown angle, not requir-

ed, on AB.
R : cos A : : tan AC : tan AD,

(c. 2.) ; therefore BD is known,
and sin BD : sin AD : : tan A :

ta^ B, (27.) ; B and A are of

the same or different affection,

according as AB is greater or

less than BD, (16.).

The third

side

BC.

Let fall the perpendicular CD from

one of the unknown angles on
the side AB.

R : cos A : : tan AC : tan AD,
(c. 2) ; therefore BD is known,
and cos AD : cos BD : : cos AC
: cos BC, (26.) ; according as

the segments AD and DB are of

the same or different affection,

AC and CB will be of the same
or different affection.
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TABLE continued.

0ITBX. SOVUHT. MLirrioN.

3

Two anglos,

AandACB,

and

AC,

the side be<

imetm them.

4

The side

BC.

From C the extremity of AC near
the side sought, let fall the pcr>

pendienlar CD on AB.
R : cos AC : : un A : cot ACD,

(e.3.) ; therefore BCD is known,
and cos BCD : cos ACD : : tan

AC : tan BC, (28.). BC is leas

or sreater than 90^, according

as Uxe angles A and BCD are

of thesmme, or different affec-

tion.

The third

angle

B.

Let fall the perpendicular CD from

one of the giren angles on the

opposite side AB.
R : cos AC :: tan A : cot ACD,

(c. 3.) ; therefore the angle BCD
is giren, and sin ACD : sin BCD
: : cos A : cos B, (25.) ; B and

A are of the same or diffei^

tnt affection, according as CD
falls within or without the tri-

angle, that is, according as ACB
is greater or less than BCD,
(16).
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TABLE continued.

GIVEN. SOUGHT. SOLUTION.

5

Two sides

AC and BC,

and an angle

A

opposite to

6

one of them,

BC.

7

The angle

B
opposite to

the other gi-

ven side

AC.

Sin BC : sin AC : : sin A : sin B,

(24.) The affection of B is am-
biguous, unless it can be deter-

mined by this rule, that accord-

ing as AC -{• BC is greater or

less than 180°, A+B is greater

or less than 180°, (10.)

The angle

ACB
contained by
the given

sides

AC and BC.

From ACB the angle sought draw
CD perpendicular to AB ; then
R : cos AC : : tan A : cot ACD,
(c. 3.); and tan BC : tan AC :

:

cos ACD : cos BCD, (28.) ACD
± BCD = ACB, and ACB is

ambiguous, because of the am-
biguous sign -f. or —

.

The third

side

AB.

Let fall the perpendicular CD from
the angle C, contained by the

given sides, upon the side AB.
R : cos A : : tan AC : tan AD,
(c. 2.) ; cos AC ; cos BC : : cos

AD : cos BD, (26.)

AB=AD±BD, wherefore AB
is ambiguous.
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TABLE continued.

•ITEM. tOCSBT. •OLUTIOJI.

The side Sin B : sin A : : sin AC : sin BC,
BC (24) ; the affection of BC is nn-

opposite certain, except when it can be de-

8 to the termined by this rule, that accord-

ing as A-)-B is greater or less thanother

given an> I80O, AC+BC is also greater or

gle A. less than 180<', (10.).

Two angles

From the unknown an^e C, dnm
A.B, The side CD perpendicular to AB ; thei^

AB R : cos A : : tan AC : tan AOJ
and a aide adjacent (c. 2.) ; tan B : tan A : : ain AD :

to the sin BD. BD is ambiguous ; and
9 AC giren therefore AB » AD :|: BD hut

have four values, some of whichangles

opposite to A.B. will be excluded by this condition,

that AB must be less than 180^.

one of them.

From the angle required, C, draw CD
B. perpendicular to AB.

R : cos AC : : tan A : cot ACD,The third

(c. 3.), cos A : cos B : : sin ACD :1

angle sin BCD, (25.). The affection of

10 BCD is uncertain, and therefore

ACB. ACB =a ACD J: BCD, has four

values, some of which may be ex-

cluded by the condition, that ACB
is less than 180<>.

From C one of the angles not requir-

The three ed, draw CD perpendicular to AB.
Find an arc E such that tan 1 AB
: tan ^ (AC-f BC) : : tan 1 (AC—
BC) : tan i E ; then, if AB be

sides,

11 One of the

AB, AC, greater than E, AB is the sum, and
angles E the difference of AD and DH ;

and but if AB be less than E, E is the

A. sum and AB the difference of AD,
BC. DB, (29.). In either case, AD and

BD are known, and tan AC : tan

1
AD : : R : cos A.
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TABLE continued.

n OITEN. 6O0GHT. SOLUTION.

Suppose the supplements of the

three given angles, A, B, C, to

be a, h, c, and to be the sides of

The three One of the a spherical triangle. Find, by
the last case, the angle of this

12 angles sides triangle, opposite to the side a,

and it will be the supplement of

A, B, C. BC. the side of the given triangle op-

posite to the angle A, that is, of

BC, (11.) ; and therefore BC is

found.

In the foregoing table, the rules are given for ascertaining the affection

of the arc or angle found, whenever it can be done : Most of these rules

are contained in this one rule, which is of general application, viz. that

when the thing found is either a tangent or a cosine, and of the tangents or

cosines employed in the computation of it, either one or three belong to obtuse

angles, the anglefound is also obtuse. This rule is particularly to be attend-

ed to in cases 5 and 7, where it removes part of the ambiguity.

It may be necessary to remark with respect to the 11th case, that the

segments of the base computed there are those cut off by the nearest per-

pendicular; and also, that when the sum of the sides is less than 180°,

the least segment is adjacent to the least side of the triangle ; otherwise
to the greatest, (17.).

1/ /r '."'>•
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The last table may also be conveniently expressed in the following

manner, denoting the side opposite lo the angle A, by o, to B by 6, and to

C by c ; and also the segments of the base, or of opposite angle, by «
and y.

Two sides

h and c, and

the angle

between

them A.

Angles

A and C

and

aide b

Sldea

a and b

and

angle A.

B

B

Find X, so that

tan x=tan b X cos A ; then

- sin X X tan A
tan 8=-^-; r-.

sin (c—x)

Find X, as abore,

, cos b X oo« (c—»)
then coa «ss ^

cos X

Find X, 80 that

cot x=cos 6xtan A ; then

tan b X cos X
tan a= ; r-.

cos (c—x)

Find «, as above,

cos A X sin (e—«)
thea cos Bss

sin X

sin B=sin Ax sin A
sin a

Find X, so that

cot x=cos ^Xtan A ; then

-, cos xX tan b
C08C=:-

tan a

Find X, so that

un x=tan 6 X cos A ; and find

y, so that

cos aXcos X
cos y=

cos b

—rJ^r-
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TABLE continued.

10

The angles

AandB

andtlie

side h.

sin fc X sin A
sin B

Find *, so that

tan a;=tan b X cos A ; and y, so

that

sin XX tan A
sin y=

tanB
c=x-^y.

Find X, so that

cot a;=cos h X tan A ; and also y,

so that

sin aXcos B
em y=

cos A
c=r«iy.

11 a, h, e.

Let a-\-b-{-c=s.

sin ^A

or cos

v/sin (5*—*) X sin {^s—c)

/sin ixsin c

, . -v/sin s-y X sin (^*

—

a)jA= 7^ , .

/sin ixsin c

12 A, B, C.

Let A+B+C=S.

sin \i
y/cos ^ S X cos (^ S—A)

•y/sin Bxsin C

or cos
_ /cos(^S—B)^cos(S—C)

/sin Bxsin C



APPENDIX

TO

SPHERICAL

TRIGONOMETRY,
CONTAININO

NAPIER'S RULES OF THE CIRCULAR PARfS.

Thb rule of the^ Circular Parts^ inrentod by Napiek, is of great um \m

Spherical Trigonometry, by reducing all the theorems employed in th«

ifolution of right angled triangles to two. These two are not new propoai*

tions, but are merely enunciations, which, by help of a particular arrange-

ment and classification of the parts of a triangle, include all the six propo-

sitions, with their corollaries, which have been demonstrated above from

the 18th to the 23d inclusive. They are perhaps the happiest example oi

artificial memory that is known.

DEFINITIONS.

1. If in a spherical triangle, we set aside the right angle, and consider only

the five remaining parts of the triangle, vis. the three sides and the two
oblique angles, then the two sides which contain the right angle, and
the complements of the other three, namely, of the two angles and the

hypotenuse, are called the Circular Parts.

Thus, in the triangle ABC right angled at A, the circular parts are AC,
AB with the complements of B, BC, and C. These parts are called

circular ; because, when they are named in the natural order of their

succession, they go round the triangle.

2. When of the five circular parts any one is taken, for the middle part,

then of tlie remaining four, the two which are immediately adjacent to

it, on the right and left, are called the adjacent parts ; and the olher two,

each of which is separated from the middle by an adjacent part, are call-

ed opposite parts.

Thus in the right angled triangle ABC, A, being the right angle, AC, AB,
90^-B, 90°-BC, 90o_C, are the circular parts, by Def. 1. ; and if

35
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anyone, as AC, be reckoned the middle part, then AB and 90^— C, which

are contiguous to it on different sides, are called adjacent parts ; and 90°

-B, 90'^—BC are the opposite parts. In like manner if AB is taken for

the middle part, AC and 90°—B are the adjacent parts : 90°--BC, and

90°—C are the opposite. Or if 90°—BC be the middle part, 90— B,
90°—O are adjacent ; AC and AB opposite, &c.

This arrangement being made, the rule of the circular part is contained

in the following

PROPOSITION.

In a right angled spherical triangle, the rectangle under the radius and the sine

of the middle part, is equal to the rectangle under the tangents of the adjacent

parts ; or, to the rectangle under the cosines of the opposite parts

The truth of the two theorems included in this enunciation may be

easily proved, by taking each of the five circular parts in succession for

the middle part, when the general proposition will be found to coincide

with some one of the analogies in the table already given for the resolution

of the cases of right angled spherical triangles. Thus, in the triangle ABC,
if the complement of the hypotenuse BC be taken as the middle part, 90°
—^B, and 90°— C, are the adjacent parts, AB and AC the opposite. Then
the general rule gives these two theorems, Rxcos BCi:=cot Bxcot C,
and R x cos BC=cos AB x cos AC. The former of these coincides with

the cor. to the 20th ; and the latter with the 22d.

To apply the foregoing general proposition to resolve any case of a right

angled spherical triangle, consider which of the three qualities named
(the two things given and the one required) must be made the middle term,

in order that the other two may be equi-distant from it, that is, may he

both adjacent, or both opposite ; then one or other of the two theorems
contained in the above enunciation will give the value of the thing re-

quired.

Suppose, for example, that AB and BC are given, to find C ; it is evi-

dent that if AB be made the middle part, BC and C are the opposite parts,

and therefore Rxsin AB=sin Cxsin BC, for sin C=cos (90°— C), and

cos (90°~BC)=:sin BC, and consequently sin C=-—-r-,- •
•^

sin UL>

Again, suppose that BC and C are given to find AC ; it is obvious that

C is in the middle between the adjacent parts AC and (90°—BC), tliere-
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fore R X cos C=tan AC x col BC, or lan ACsss 1—;;sicos C -f tan BC ^

because, as has been shewn above, K7;=^n BC.
cot BC

In the same way may all the other cases be resolrcd. One or two tnala

will always lead to the knowledge of the part which in any given case is

to be asRiimcd as the middle part ; snd a little practice will make it easy,

even without such trials, to judge at once which of them is to be so as-

sumed. It may be useful for the learner to range the names of the fir*

circular parts of the triangle round ihe circumference of a circle, at equal

distances from one another, by which means the middle part will be inune

diately determined.

Besides the rule of ihe eircular pvts, Napier derired from the last of the

three theorems ascribeu to him above, (schol. 29.) the solutions of all the

cases of oblique angled triangles. These solutions are as follows : A, B,
C, denoting the three triangles of a spherical triangle, and a, 6, e, the aide*

opposite to them.

I.

Given two sides 6, e, aitd the angle A between them.

To find the angles B and C.

u. J (D-C)=c« } Ax|i=j{^. (31.) c. I.

«|(B+C)=co.lAx^^]i^ (31.) cor. I.

To find the tliird side a.

in B : sin A : : sin A : sin a.

II.

Given the two sides h, c, and the angle B opposite to one of

To find C, and the angle opposite to the other side.

sin 6 : sin c : : sin B : sin C.

To find the contained angle A.

».}A-«.l(»-C)xeiii±^. (3..)c«.I.

To find the third side a.

sin B : sin A : : sin & : sin a.

III.

Giren two angles A snd B, and the side e between them.

To find the other two sides a, b.
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«ai(»,«)=ta„Jcx|||{^. (31.)

Ux.H»+«)='anicX^^^. (31.)

To find the third angle C.

sin a : sin c : : sin A : sin C.

IV,

Given two angles A and B, and the side a, opp^ite to one of them

To find b, the side opposite to the other.

sin A : sin B : : sin a : sin b.

To find e, the side between the given angles.

«aj.=«>nj(a-5)x5|^ii^. (31.)

To find the third angle C.

sin a : sin c : : sin A : sin C.

The other two cases, when the three sides are given to find the angles,

or when the three angles are given to find the sides, are resolved by the

29th, (the first of Napier's Propositions,) in the same way as in the table

already given for the case of the oblique angled triangle.

There is a solution of the case of the three sides being given, which it

is often very convenient to use, and which is set down here, though the

proposition on which it depends has not been demonstrated.

Let a, b, c, be the three given sides, to find the angle A, contained be-

tween b and c.

If Rad = 1, and a + b -{ e = s,

sin \ A
^^/-^ihs-b)Xsin^is-c)

.

^^^
•y/sin 6 X sin c

i - -v/sin. (i^Xsini (.?— a))cos ^ A =— — ?— —.
•y/sin ft X sin c

In like manner, if the three angles. A, B, C are given to fmd c, the sida

between A and B.
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Let A + B + C = S,

, , Vcosl Sxcos (4 S—A)
•in I c=-i ' .2J= i or,

Vsin B X sin C

, v/co8 (4 S— B) XC08 a S—C)
cos * e=:— ^^ • '.

V>in B X sin C.

These theorems, on account of the facility with which Logarithms are

applied to them, are the most convenieDt of any for resolving the two cases

to which they refer. When A is a vriy obtuse angle, the second theorem,

which gives the value of the cosine of iu half, is to be used ; otherwise

the first theorem, giving the value of the siue of its half its preferable.

T^ same is to be obsewred with respect to the side c, the reason of which
< • explained. Plane Trig. SchoL

KMD or SPHSRICAI. TRfOOKOMKTRV
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NOTES
ON THE

FIRST BOOK OF THL ELEMENTS.

DEFINITIONS.

I.

I.<« the definitions a few changes have been made, of which it is ncce**

»aiy to give some arcoiiiiL One of these changes respects the firs*, defini*

tion, that of a point, wtuch Euclid has said to be, * That which has no

parts, or which has no magnitude.' Now, it has been objected to this defi-

nition, that it contains only a negative, and that it is not convertible, as

every good definition ought certainly to be. That it is not convertible is

evident, for tltough every point is unextended, or without magnitude, yet

every thing unextended or without magnitude, is not a point. To tliis it

is impossible to reply, and therefore it becomes necessary to change the

definition altogether, which is accordingly done here, a point being defined

to be, thai which has position but not magnitude. Here the afilrmative part

includes all that is essential to a point, and the negative part includes

every tiling that is not essential to it. I am indebted for this definition to

a friend, by whose judicious and learned remarks I have often profited.

II.

AAer the second definition Euclid has introduced the following, " the
•* extremities of a line are points."

Now, this is certainly not a definition, but an inference from the defini-

tions of a point and of a line. That which terminates a line can have no
breadth, as the line in which it is has none ; and it can have no length, as it

would not then be a termination, but a part of that which is supjwsed to

terminate. The termination of a line can therefore have no magnitude, and
having necessarily position, it is a point. But as it is plain, that in all this

we are drawing a consequence from two definitions already laid down, and
not giving a new definition, I have taken the liberty of putting it down as

a corollary to the second definition, and have added, that the intersections o^
one line with another arepoints, as this afifords a good illustration of the nature

of a point, and is an inference exactly of the same kind witb the preceding.

The same thing nearly has been done with the fourth definition, where
that which Euclid gave as a separate definition is made a corollary to tha
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fourth, because it is in fact an inference deduced from comparing the defi

iiitions of a superficies and a line.

As it is impossible to explain the relation of a superficies, a line, and a

point to one another, and to the solid in which they all originate, bettei

than Dr. Simson has done, I shall here add, with very little change, the

illustration given by that excellent Geometer.
" It is necessary to consider a solid, that is, a magnitude which has

ength, breadth, and thickness, in order to understand aright the definitions

of a point, line and superficies ; for these all arise from a solid, and exist in

it ; The boundary, or boundaries which contain a solid, are called superfi-

cies, or the boundary which is common to two solids which are contiguous,

or which divides one solid into two contiguous parts, is callea a superfi-

cies ; Thus, it BCGF be one of the boundaries which contain the solid

ABCDEFGH, or which is the common boundary of this solid, and the solid

BKLCFNMG, and is therefore in the one as well as the other soUd, it is

called a superficies, and has no thickness ; For if it have any, thiv thick-

ness must either be apart of the thickness of the solid AG, or the sol}d BM,
or a part of the thickness of each of them. It cannot be a part of the thick-

ness of the solid BM ; because, if this solid be removed from the solid AG,
the superficies BCGF, the boundary of the solid AG, remains sti'l the

same as it was. Nor can it be a part of the thickness of the solid AG

:

because if this be removed from the solid BM, the superficies BCGl', the

boundary of the solid BM, does nevertheless remain; therefore the super-

ficies BCGF has no thickness, but only length and breadth.
" The boundary of a superficies is called a line ; or a line is the common

boundary of two superficies that are contiguous, or it is that which dividijs

one superficies into two contiguous parts : Thus, if BC be one of the boun-

daries which contain the superficies ABCD, or which is the common boun-
dary of this superficies, and of the superficies KBCL, which is contiguous
to it, this boundary BC is called a line, and has no breadth ; For, if it have
any, this must be part either of the breadth of the superficies ABCD oi

of the superficies KBCL, or part of
each of them. It is not part of the
breadth of the superficies KBCL

;

for if this superficies be removed from
the superficies ABCD, the line BC T]
which is the boundary of the super-
ficies ABCD remains the same as it

was. Nor can the breadth that BC
is supposed to have, be a part of the

breadthofthesuperficiesABCD; be-
cause, if this be removed from the su-
perficies KBCL, the line BC, which
is the boundary of the superficies -^

a M

r

K
KBCL, does nevertheless remain : Therefore the line BC has no breadth.
And because the line BC is in a superficies, and that a superficies has no
thickness, as was shown ; therefore a line has neither breadth nor thick-
ness, out only length.

*' The boundary of a line is called a point, or a point is a common boun
dary or extremity of two lines that are contiguous : Thus, if B be the ex-
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livmity of the line AB, or the common extremity of the two lines AB, KB,

dii« extremity is called a point, and has no length : For if it have any, thi»'

IT G

£

length must either be part of the

length of *.bj line AB, or of the line

KB. It is not part of the length of

KB ; for if the line KB be removed

Cram AB, the point B, which is the

crs&emityofthe line AB, remains the

tame as it was ; Nor is it part of the

kjngth of the line AB ; for if A B be

.amoved from the line KB, the point

B, which is the extremity of the lin«

KB, does nevertheless remain

:

Therefore the point B has no length

;

And because a point is in a line, and

t line has neither breadth nor thickness, therefore a point has no length,

hreadth, nor thickness. And in this manner the definition of a point, line,

tnd superficies are to be understood."

III.

Euclid has defined a straight line to be a line which (as we translate it)

** lies evenly between its extreme points.* This definition is obviously

faulty, the word evenly standing as much in need of an explanation as the

word straight, which it is intended to define. In the original, however, it

must be confessed, that this inacctiracy is at least less striking than in our

translation ; for the word which we render evenly is i^taa, equally, and is ac-

cordingly translated ex dtquo, and equaliter by Commandine and Gregoiy.

The definition, therefore, is, that a straight line is one which lies equally

between its extreme points : and if by Uiis we understand a line that lies

between its extreme points so as to be related exactly alike to the space

on the one side of it, and to the space on the other, we have a definition

that is perhaps a little too metaphysical, but which certainly contains in it

the essential character of a straight line. That Euclid took the definition

in this sense, however, is not certain, because he has not attempted to

deduce from it any property whatsoever of a straight line ; and indeed, it

should seem not easy to do so, without employing some reasonings of a

more metaphysical kind than he has any where admitted into his Elements.

To supply tne defects of his definition, he has therefore introduceil the

Axiom, that two straight lines cannot inclose a space ; on which Axiom it is,

and not on his definition of a straight line, that his demonstrations are

fonnded. As this manner of proceeding is certainly not so regular and
scientific as that of laying down a definition, from which the properties of

the thing defined maybe logically deduced, I have substituted another defi-

nition of a straight line in the room of Euclid's. This definitionof a straight

line was suggested by a remark of Boscovich, who, in his Notes on the

philosophical Poem of Professor Stay, says, •* Rectam lineam rectae con-
" gniere totam toii in infinitum productum si bina puncta unius binis al-

** terius congruant, patet ex ipsa admodum clara rectitudinis idea qua-'y:

^6
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"habemus" (Supplementum m lib. 3. § 550.) Now, that which Mr,

Boscovich would consider as an inference from our idea of straightness,

seems itself to be the essence of that idea, and to afford the best criterion

for judging whether any given line be straight or not. On this principle

we have given the definition above, If there be two li?ies which cannot coin."

cide in two points, without coinciding altogether, each ofthem is called a straight

line.

This definition was otherwise expressed in the two former editions ;%
was said, that lines are straight lines which cannot coincide in part,. with

out coinciding altogether. This was liable to an objection, viz. that it de

fined straight lines, but not a straight line ; and though this in truth is but

a mere cavil, it is better to leave no room for it. The definition in the form

now given is also more simple.

From the same definition, the proposition which Euclid gives as an

Axiom, that two straight lines cannot inclose a space, follows as a neces-

sary consequence. For, if two lines inclose a space, they must intersect

one another in two points, and yet, in the intermediate part, must not coin-

cide ; and therefore by the definition they are not straight lines. It follows

in the same way, that two straight lines cannot have a comnlon segment,

or cannot coincide in part, without coinciding altogether.

After laying down the definition of a straight line, as in the first Edition,

I was favoured by Dr. Reid of Glasgow with the perusal of a MS. contain-

ing many excellent observations on the first Book, of Euclid, such as might
be expected from a philosopher distinguished foi the accuracy as well as

the extent of his knowledge. He there defined a straight line nearly as

has been done here, viz. " A straight line is that which cannot meet ano-
" ther straight line in more points than one, otherwise they perfectly coincide,
" and are one and the same." Dr. Reid also contends, that this must have
been Euclid's own definition ; because, in the first proposition of the

eleventh Book, that author argues, " that two straight lines cannot have a
" common segment, for this reason, that a straight line does not meet a
" straight line in more points than one, otherwise they coincide." Whether
this amounts to a proof of the definition above having been actually

Eudid's, I will not take upon me to decide ; but it is certainly a proof

that the writings of that Geometer ought long since to have suggested this

definition to his commentators ; and it reminds me, that I might have learn-

ed from these writings what I have acknowledged above to be derived from
a remoter source.

There is another characteristic, and obvious property of straight lines,

by which 1 have often thought that they might be very conveniently defin-

ed, viz. that the position of the whole of a straight line is determined by the

position of two of its points, in so much that, when two points of a straight

line continue fixed, the line itself cannot change its position. It might
therefore be said, that a straight line is one m which, if the position of tioo

points be determined, the position of the whole line is determined. But this de-

finition, though it amount in fact to the same thing with that already given,

is rather more abstract, and not so easily made the foundation of reason-
ing. I therefore thought it best to lay it' aside, and to adopt the definition

given in the text.
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V.

\

The definition of a plane is given from Dr. Simson, Euclid's being liable

to the same objections with his definition of a straight line ; for, he says,
that a plane superficies is one which " lies evenly between its extreme
"lires." The defects of tliis definition arc completely remoxedin that which
uT. Simson has given. Another definition diflerent from both might have
been adopted, viz. That those superficies are called plane, which are such,
that if three points of the one coincide with three iioints of the other, the
whole of the one must coincide with the whole of the otlier. This defini-

tion, as it resembles that of a straight line, already given, might, perhaps,
have been introduced with some advantage ; but as Uie purposes of demon-
straiion cannot be better answered than by that in the text, it has been
thought best to make no farther alteration.

VI.

In Euclid, the general definition of a plane angle is placed before that ot

a rectilineal angle, and is meant to comprehend those angles which are

formed by the meeting of the other lines than straight lines. A plane
angle is said to be "the inclination of two lines to one another which
" meet together, but are not in the same direction." This definition ia

omitted here, because that the angles formed by the meeting of curve lines,

though they may become the subject of geometrical investigation, certainly

do not belong to the Elements ; for the angles that must first be considered

sre those iriade by the intersection of straight lines with one another.

The angles formed by the contact or intersection of a straight line and a
rircle, or of two circles, or two curves of any kind with one another,

could produce nothing but perplexity to beginners, and cannot possibly be
imderstood till the properties of rectilineal angles have been fidly explained.

On this ground, I am of opinion, that in an clementar}' treatise it may
fairly be omitted Whatever is not useful, should, in explaining the ele-

ments of a science, be kept out of sight altogether ; for, if it does not assist

the progress of the understanding, it will certainly retard it

AXIOMS.

Amono the-Axioms there have been made only two alterations. The
10th Axiom in Euclid is, that '' two straight lines cannot inclose a space ;"

which, hanng become a corollary to our definition of a straight line, ceases

of course to be ranked with self-evident propositions. It is therefore re-

moved from among the Axioms.

The 12th Axiom of Euclid is, that " if a straight line meets two straight

lines, so as to make the two interior angles on the same side of it taken
** together less than two right angles, these straight lines being continually

' produced, shall at length meet upon that side on which are the angles
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"which are less than two right angles." Instead of this proposition,

which, though true, is by no means self-evident ; another that appeared

more obvious, and better entitled to be accounted an Axiom, has been in-

troduced, viz. " that two straight lines, which intersect one another, can-

"not be both parallel to the same straight line." On this subject, how-

ever, a fuller explanation is necessary, for which see the note on the 29tli

Prop.

PROP. IV. and VIII. B. I.

The IV. and VIIT. propositions of the first book are the foundation of all

that follows with respect to the comparison of triangles. They are de-

monstrated by what is called the method of superaposition, that is, by lay

ing the one triangle upon the other, and proving that they must coincide

To this some objections have been made, as if it were ungeometrical to

suppose one figure to be removed from its place and applied to another

figure. " The laying," says Mr. Thomas Simson in his Elements, " of

" one figure upon another, whatever evidence it may afford, is a mechanical
" consideration, and depends on no postulate." It is not clear what Mr.

Simson meant here by the word mechanical : but he probably intended only

to say, that the method of superaposition involves the idea of motion, which
belongs rather to mechanics than geometry ; for I think it is impossible

that such a Geometer as he was could mean to assert, that the evidence

derived from this method is like that which arises from the use of instru-

ments, and of the same kind with what is furnished by experience and ob-

servation. The demonstrations of the fourth and eighth, as they are given

by Euclid, are as certainly a process of pure reasoning, depending solely

on the idea of equality, as established in the 8th Axiom, as any thing in

geometry. But, if still the removal of the triangle from its place be consi-

dered as creating a difficulty, and as inelegant, because it involves an idea,

that of motion, not essential to geometry, this defect may be entirely re-

medied, provided that, to Euclid's three postulates, we be allowed to add
the following, viz. That if there be two equal straight lines, and if anyfigure
whatsoever he constituted on the one, a figure every way equal to it may be con-

stituted on the other. Thus if AB and DE be two equal straight lines, and

ABC a triangle on the base AB, a triangle DEF every way equal to ABC
may be supposed to be constituted on DE as a base. By this it is not

meant to assert that the method of describing the triangle DEF is actually

known, but merely that the triangle DEF may be conceived to exist in

all respects equal to the triangle ABC. Now, there is no truth whatso-
ever that is better entitled than this to be ranked among the Postulates or

Axioms of geometry ; for the straight lines AB and DE being every way
equal, there can be nothing belonging to the one that may not also belong

to the other.

On the strength of this Postulate the IV. proposition is thus demonstrated.

If ABC, DEF be two triangles, such that the two sides AB and AC of

the one are equal to the two ED, DF of the other, and the angle BAG,
contained by the sides AB, AC of the one, equal to the angle EDF, con
lained by the sides ED, DF of the other ; the triangles ABC and EDF are

•very wav equal.
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On AB let a triangle be constituted ereiy way equal to the triangle DEF

;

then if this triangle coincide with the triangle ABC, it is evident that tb«

proposition is true, for it is equal to DEF by hypothesis, and to ABC, be-

cause it coincides with it ; wherefore ABC, DEF are equal to one another.

But if it does not coincide with ABC, let it hare the position ABG ; and first

suppose G not to fall on AC ; then the angle BAG is not equal to the angle

BAC. But the angle BAG is equal to the angle EDF, therefore EDP
and ABC are not equal, and they are also equal by hypothesis, which is

impossible. Therefore the point G must fall upon AC ; now, if it fall upon

AC but not at C, then AG is not equal to AC ; but AG is equal to DF,
therefore DF and AC are not equal, and they are also equal by supposition,

which is impossible. Therefore G must coincide with C, and the triangle

AGB with the triangle ACB. But AGB is every way equal to DEF,
therefore ACB and DEF are also every way equal.

By help of the same postulate, the fiAh may also be very easily de-

monstrated.

Let ABC be an isoaceles triangle, in which AB, AC are the equal sides

,

the angle ABC, ACB opposite to these sides are also equal.

Draw the straight line EF equal to BC, and suppose that on EF the tri

angle DEF is constituted every way equal to the triangle ABC, that it.'

having DE equal to AB, DF to AC, the angle EDF to the angle BAC, th«

angle ACB to the angle DFE, 6m.

Then because DE is equal to AB, and AB is equal to AC, DE is equa
to AC ; and for the same reason, DF is equal to AB. And because DF is

equal to AB, DE to AC, and the angle FDE to the angle BAC, the angle

ABC is equal to the angle DFE. But the angle ACB is also, by hy^
[rathesis, equal to the angle DFE ; therefore the angles ABC, ACB an
equal to one another.
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Such demonstrations, it must, however, be acknowledged, trespass

against a rule which Euclid has uniformly adhered to throughout the Ele-

ments, except where he was forced by necessity to depart from it ; This

rule is, that nothing is ever supposed to be done, the manner of doing which

has not been already taught, so that the construction is derived either di-

rectly from the three postulates laid down in the beginning, or from pro-

blems already reduced to those postulates. Now, this rule is not essential

to geometrical demonstration, where, for the purpose of ^discovering the

properties of figures, we are certainly at liberty to suppose any figure to be

constructed, or any line to be drawn, the existence of which does not in-

volve an impossibility. The only use, therefore, of Euclid's rule is to

guard against the introduction of impossible hypotheses, or the taking for

granted that a thing may exist which in fact implies contradiction ; from

such suppositions, false conclusions might, no doubt, be deduced, and the

rule is therefore useful in as much as it answers the purpose of excluding

them. But the foregoing postulatum could never lead to suppose the

actual existence of any thing that is impossible ; for it only assumes the

existence of a figure equal and similar to one already existing, but in a dif-

ferent part of space from it, or having one of its sides in an assigned posi-

tion. As there is no impossibility in the existence ol one of these figures

it is evident that there can be none in the existence of the other.

PROP. XXI. TIIEOPv.

It is essential to the truth of this proposition, that the straight lines

drawn to the point within the triangle be drawn from the two extremities

of the base ; for, if they be drawn from other points of the base, their sura

may exceed the sum of the sides of the triangle in any ratio that is less

than that of two to one. This is demonstrated by Pappus Alexandrinus

in the 3d Book of his Mathematical Collections, but the demonstration is of a

kind that does not belong to this place. If it be required simply to show,
that in certain cases the sum of the two lines drawn to the point within the

triangle may exceed the sum of the sides of the triangle, the demonstra-

tion is easy, and is given nearly as follows by Pappus, and also by Proclus,

in the 4th Book of his Commentary on Euclid.

Let ABC be a triangle, having the angle at A a right angle : let D be
any point in AB

;
join CD, then CD will be greater than AC, because in

the triangle ACD the angle CAD is greater than the angle ADC. From
DC cut off DE equal to AC ; bisect CE
in F, and join BF ; BF and FD are greater

than BC and CA.
Because CF is equal to FE, CF and FB

are equal to EF and FB, but CF and FB
are greater than BC, therefore EF and FB
are greater than BC. To EF and FB add
ED, and to BC add AC, which is equal to

ED by construction, and BF and FD will

be greater than BC and CA.
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It is endent, that if the angle BAG be obtuse, the sune reasoning mnj
be applied.

'I Ills proposition is a sufficient vindication of Euclid for hanng demor-
strated the 21 St. proposition, which some affect to consider as self-evident;

for it proves that the circumstance on which the truth of that proposition

depends is not obvious, nor that which at first sight it is supposed to be, viz.

thui dl' the one triangle being included within the other. For this reason I

cannot agree with M- Clairaut, that Euclid domoustrated this pmpositiun

only ui avoid the cavils of the Sophists. But I must, at the same tinte, ub*

•ervtt, that what the French Geometer has said on the subject has certain

ly Ix'en misunderstood, and in one respect, unjustly censured by Dr. Simson.

The fxact translation of his words is as fullows :
" If Euclid has taken the

"trmiide to demonstrate, that a triangle included within another has thtt

**8uin of its sides less than the sum of the sides of the triangle in which it

**iK included, we are not to be surpiised. That Geometer had to do with
** ihose obstinate Sophists, who made a point of refusing their assent to the
** nioKt evident truths," Sic. (Elements de Geometrie par M. Clairaut.

Pref.)

l)r. Simson supposes M. Clairaut to mean, by the proposition which ho
enunriates here, that when one triangle is included in another, the sum of

the two sides of the included triangle is necessarily less than the sum of the

two sides of the triangle in which it is included, whether they be on the

same base or not. Now this is not only nut EuclidV proposition, as I)r

Simson remarks, but it is not true, and is directly contrary to what has
just b«>en demonstrated from Proclus. But the fact seems to be, that Nf.

Cluiraui's meaning is entirely different, and that he intends to speak net of

two ul'tlie sides of a triangle, but of all the three ; so that his proposition

is, " that when one tnangle is included within another, the sum of all the

**t)ir«-e sides of the included triangle is less than the sum of all the three

si(lt;H of the other,** and this is without doubt true, though I think by no
Dieiiiis self-evident. It must be acknowledged also, that it is nut exactly

Eurlid'.H proposition, which, hoWover, it comprehends under it, and is the

gent-rill theorem, of which the other is only a particiUar case. Therefore,

thou<;h .M. Clairaut may be blamed for maintaining that to be an Axiom
whicli requires demonstration, yet he is not to be accused of mistaking a
false proposition for a true one.

PROP. XXII. PROB.
•

Thomas Simson in his Elements has objected to Euclid's demonstrntion

of this proposition, because it contains no proof, that the two circles inntie

use of in the construction of the Problem must cut one another; nnd Dr.

Simson on the other hand, always unwilling to acknowledge the smallest

bleniiith in the works of Euclid, contends that the demonstration is pj-rfcct.

The tnnh, however, certainly is, that the demonstration admits of stune

impntvement ; for the limitation diat is mad* in the enunciation of any
Proldem ought always to be shewn to be necessarily connected with llie

construction of it. and this is what Euclid has neglected to do in the pir-

sent instance. The defect may easily be supplied, and Dr. Simson hitn-
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self has done it in effect in his note on this proposition, though he denies it

to be necessary.

Because that of the three straight lines DF, FG, GH, any two are great-

er than the third, by hypothesis, FD is less than FG and GH, that is,

than FH, and therefore the circle described from the centre F, with the

distance FD must meet the line FE between F and H ; and, for the like

reason, the circle described from the centre G at the distance GH, must
meet DG between D and G, and therefore the one of these circles can-

not be wholly within the other. Neither can the one be wholly without

the other, because DF and GH are greater than FG ; the two circles

must therefore intersect one another.

PROP. XXVn. and XXVHI,

Euclid has been guilty of a slight inaccuracy in the enunciations of

these propositions, by omitting the condition, that the two straight lines on
which the third line falls, making the alternate angles, &c. equal, must
be in the same plane, without which they cannot be parallel, as is evident

from the definition of parallel lines. The only editor, I believe, who has re-

marked this omission, is M. de Foix Dug de Candalle, in his transla-

tion of the Elements published in 1566. How it has escaped the notice of

subsequent commentators is not easily explained, unless because they

thought it of little importance to correct an error by which nobody was
likely to be misled.

PROP. XXIX.

The subject of parallel lines is one of the most diiEcult in the Elements
of Geometry. It has accordingly been treated of in a great variety of differ-

ent ways, of which, perhaps, there is none that can be said to have given

entire satisfaction. The difficulty consists in converting the 27th and 28th of

Euclid, or in demonstrating, that parallel straight lines, or such as do not

meet one another, when they meet a third line, make the alternate angles

with it equal, or, which comes to the same, are equally inclined to it, and
make the exterior angle equal to the interior and opposite. In order to de-
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monstrate this proposition, Euclid assumed it as an Axiom, that " if a
" straight line meet two straight lines, so as to make the interior angles on
" the same side of it less than two right angles, these straight lines being
" continually produced, wik at length meet on the side on which the angles
* are that are less than two right angles." This proposition, however, is

not f-elf-evident, and ought the less to be received without proof, that, as

Pru( lus has obser>'ed, the converse of it is a proposition that confessedly

requires to be demonstrated. For the converse of it is, that two straight

lines which meet one another make the interior angles, with any third line,

less than two right angles ; or, in other words, that the two interior angles

of any triangle are less than two right angles, which is tlie 17(h of the

First Hook of the Elements : and it should seem, that a proposition can
never rightly be taken for an Axiom, of which the converse requires a de-

monstration.

The methods by which Geometers have attempted to remove this

blemish from the Elements are of three kinds. 1 . Hy a new definition of
parallel lines. 2. By introducing a new Axiom concerning parallel lines,

more obvious than Euclid's. 3. Hy reasoning merely from the definition

of parallels, and the properties of lines already demonstrated without the

assumption of any new Axiom.

1 . One of the definitions that has been substituted for Euclid's is, that

straight lines are parallel, which preserve always the same distance from
one another, by the word distance being understood, a perpendicular drawn
10 oneof the lines from anypoint whatever in the other. If these perpendicu-
lars be every where of the same length, the straight lines are called parallel.

This is the definition given bv Wolfius, by Boscovich, and by Thomas
Simson, in the first edition of his Elements. It is however a faulty defi-

nition, for it conceals an Axiom in it, and takes for granted a property of
straight lines, that ought cither to be laid down as self-evident, or demonstrat-
ed, if possible, as a i'heorem. Thus, if from the three points, A, B, and C
of the straight line AC, perpendiculars AD, BE, CF be drawn all equal
to one another, it is implied in the definition

that the points O, E and F are in the same
straight line, which, though it be true, it was
not the business of the definition to inform us

of Two perpendiculars, as AD and CF, are

alone sufficient to determine the (xisition of the

straight lino DF, and therefore the definition ought to be, "that two straight

" lines are parallel, when there are two points in the one, from which the

" perpendiculars drawn to the other are equal, and on the same side of it."

This is the definition of parallels which M. D'Alembert seems to prefoi

to all others ; but he acknowledges, and very justly, that it still remains a

matter of difficulty to demonstrate, that all the perpendiculars drawn from

the one of these lines to the other are equal. ( F.nrydopedir, Art. Parallele.)

Another definition that has been given of parallels is, that they are lines

which make equal angles with a third line, toward the same parts, or such

as make the exterior angle equal to the interior and op|)osite. Varignoii

Bezout. and several other mathematicians, have atUiptrd this definition,

which, it must be acknowledged, is n perfectly good one, if it beundersiuod

37
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fcy it, that the two lines called parallel, are such as make equal angles wua

A \g »

a certain third line, but not with any line that falls upon them. It remams
therefore, to be demonstrated, That if AB and CD make equal angles with

GH, they will do so also with any other line whatsoever. The definition,

therefore, must be thus understood. That parallel lines are such as make

equal angles, with a certain third line, or, more simply, lines which are per-

pendicular to a given line. It must then be proved, 1. That straight lines

which are equally inclined to a certainMwc or perpendicular to a certain line,

must be equally inclined to all the other lines that fall upon them ; and also,

2. That two straight lines which do not meet when produced, must make

equal angles with any third line that meets them.

The demonstration of the first of these propositions is not at all facilitated

by the new definition, unless it be previously shown that all the angles of a

triangle are equal to two right angles.

The second proposition would hardly be necessary if the new definition

were employed ; for when it is required to draw a line that shall not meet

a given line, this is done by drawing a line that shall have the same incli-

nation to a third line that the first or given line has. It is known that lines

so drawn cannot meet. It would no doubt be an advantage to have a defi-

nition that is not founded on a condition purely negative.

2. As to the Mathematicians who have rejected Euclid's Axiom, and in-

troduced another in its place, it is not necessary that much should be said.

Clavius is one of the first in this class ; the Axiom he assumes is, " That a

" line of which the points are all equidistant from a certain straight line in

" the same plane with it, is itself a straight line." This proposition he does

not, however, assume altogether, as he gives a kind of metaphysical proof

of it, by Avhich he endeavours to connect it with Euclid's definition of a

straight line, with which proof at the same time he seems not very well

satisfied. His reasoning, after this proposition is granted (though it ought

not to be granted as an Axiom), is logical and conclusive, but is prolix and

operose, so as to leave a strong suspicion that the road pursued is by no

means the shortest possible.

The method piusued by Simson, in his Notes in the First Book of Euclid,

is not very different from that of Clavius. He assumes this Axiom, " That
' a straight line cannot first come nearer to another straight line, and then
" go farther from it without meeting it." (Notes, &c. English Edition.) By
onming nearer is understood, conformably to a previous definition, the dimi-
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nution of the perpendiculars drawn from the one line to the other. This

Axiom is more readily assented to than that of Clavius, from which, how-
ever, it is not very different : but it is not very happily expressed, as the idea

not merely of motion, but of time, seems to be involved in the notion oifirst

coming nearer, and then going farther off. Even if this inaccuracy is pass-

ed over, the reasoning of Simson, like that of Clarius, is prolix, and evi-

denMy a circuitous method of coming at the truth.

Thomas Simson, in the second edition of his Elements, has presented

*iu8 Axiom in a simpler form. " If two points in a straight line are posited

"at unequal distances from another straight line in the same plane,

" those two lines being indefinitely produced on the side of the least db-
" tance will meet one another."

By hvlp of this Axiom it is easy to prove, that if two straight lines AB,
CD are parallel, the perpendiculars to tlie one, terminated by the other,

are all equal, and are also perpendicular to both the parallels. That they

are equal is evident, otherwise the lines would meet by the Axiom. That
they are perpendicular to both, is demonstrated thus :

If AC and BD,which are perpendicular to AB, and equal to one another,

be not also perpendicular to CD, from C let CE ^
be drawn at right angles to BD. Then, be-

cause AB and CE are both perpendicular to

BD, they are parallel, and therefore the perpen-

diculars AC and BE are equal. But AC is

equal to BD, (by hypotheses,) therefore BE and

BD are equal, which is impossible ; BD is therefore at right angles to CD.
Hence the proposition, that " if a straight line fall on two parallel lines, it

** makes the alternate angles equal," is easily derived. Let FH and GE be

perpendicular to CD, then they will be parallel to one another, and also at

right angles to AB, and therefore FG and HE are equal to one another,

by the last proposition. Wherefore in the triangles EFG, EFH, the sides

HE and EK are equal to the sides GF and FE, each to each, and also the

third side HF to the third side EG, therefore the angle HEF is equal to

the angle EFG, and they are alterr.ate angles.

This method of treating the doctrine of parallel lines is extremely plain

and concise, and is perhaps as good as any that can be followed, when a
new Axiom is assumed. In the text above, I have, however, followed a

different method, employing as an Axiom, "That two straiuht lines, which
" cut one another, cannot be both parallel to the same straijjlit line." This
Axiom has been assumed by others, particularly by Ludlam, in his very

useful little tract, entitled Rudiments of Mathematics.
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It is a proposition readily enough admitted as self-evident, and leads

to the demonstration of Euclid's 29ih Proposition, even with more brevity

than Simson's.

3. All the methods above enumerated leave the mind somewhat dissatis-

fied, as we naturally expect to discover the properties of parallel lines, as

we do those of other geometric quantities, by comparing the definition of

those lines, with the properties of straight lines already known. The most
ancient writer who appears to have attempted to do this is Ptolemy the as-

tronomer, who wrote a treatise expressly on the subject of Parallel Lines.

Proclus has preserved some account of this work in the Fourth Book of his

commentaries : and it is curious to observe in it an argument founded on the

principle which is known to the moderns by the name of the su^icient reason.

To prove, that if two parallel straight lines, AB and CD, be cut by a

third line EF, in G and H, the two interior angles AGH, CHG will be

equal to two right angles, Ptolemy reasons thus : If the angles AGH,
CHG be not equal to two right angles, let them, if possible, be greater

than two right angles : then, because the lines AG and CH are not more
parallel than the lines BG and DH, the angles BGH, DUG are also

greater than two right angles. Therefore, the four angles AGH, CHG,
BGH, DHG are greater than four right angles ; and they are also equal

to four right angles, which is absurd. In the same manner it is shewn,
that the angles AGH, CHG cannot be less than two right angles. There-
fore they are equal to two right angles.

But this reasoning is certainly inconclusive. For why are we to sup-

pose that the interior angles which the parallels make with the line cutting

them, are either in every case greater than two right angles, or in every

case less than two right angles ? For any thing that we are yet supposed
to know, they may be sometimes greater than two right angles, and some-
times less, and therefore we are not entitled to conclude, because the angles

AGH, CHG are greater than two right angles, that therefore the angles

BGH, DHG are also necessarily greater than two right angles. It

may safely be asserted, therefore, that Ptolemy has not succeeded in his

attempt to demonstrate the properties of parallel lines without the assist-

ance of a new Axiom.
Another attempt to demonstrate the same proposition without the assist-

ance of a new Axiom has been made by a modern geometer, Francescliini
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Professor of Mathematics in the University of Bologna, in an essay, which
he entitles. La Teoria delle paraltele rigorosamente dimonstrcUa, printed in

his OpuscoU MathenuUiei, at Bassano in 1787.

The diflicuhy is there reduced to a proposition nearly the same with this.

That if BE make an acute angle with BD, and if DE be perpendicular to

BD at any point, BE and DE,
if produced, will meet. To de-

monstrate this, it is supposed*

that BO, BC are two parts taken

in BE, of which BC is greater

than BO, and that the perpendi-

culars ON, CL are drawn to BD ;

then shall BL be greater than

BN. For, if not, that is, if the

perpendicular CL falls either at

N, or between B and N, as at

F ; in the first of these cases the

angle CNB is equal to the angle ONE, because they are both right angles,

which is impossible ; and, in die second, the two angles CFN, CNF of the

triingle CN F, exceed two right angles. Therefore, adds our author, since,

as BC increases, BL also increases, and since BC may be increased with-

out limit, so BL may become greater than any givon line, and therefore may
be greater than BD ; wherefore, since the perpendiculars to BD from points

beyond D meet BC, the perpendicular from D necessarily meets it.

Now it will be found, on examination, that this reasoning is no more
conclusive than the preceding. For, imless it be proved, that whatever

multiple BC is of Bu, the same is BL of BN, the indefinite increase of

BC does not necessarily imply the indefinite increase of BL.or that BL may
be made to exceed BD. On the contrary, BL may always increase, and

yet may do so in such a manner as never to exceed BD : In order that the

demonstration should be conclusive, it would be necessary to shew, that

when BC increases by a part equal to BO, BL mcreases always by a part

equal to BN ; but to do this will be found to require the knowledge of those

very properties of parallel lines that we are seeking to demonstrate.

Lkgenore, in his Elements of Geometry, a work entitled to the highest

praise, for elegance and accuracy, has delivered the doctrine of parallel lines

without any new Axiom. He has done this in two different ways, one in

the text, and the other in the notes. In the former he has endeavoured to

prove, independently of the doctrine of parallel lines, that all the angles of

a triangle are equal to two right angles ; from which proposition, when
it is once established, it is not difficult to deduce every thing with respect to

parallels. But, though his demonstration of the property of triangles juet

mentioned is quite logical and conclusive, yet it has the fault of being long

and indirect, proving first, that the three angles of a triangle cannot b«*

grrjiter than two right angles, next, that they cannot be less, and doing

both by reasoning abundantly subtle, and not of a kind readily apprehend-

ed by those who are only beginning to study the Mathematics.

The demonstration which he has given in the notes is extremely ingeni-

ous, and proceeds on this verj' simple and undeniable Axiom, that we can-

not compare an angle and a line, as to magnitude, or cannot have an equa-



'294 NOTES.

tion of any sort between them. This truth is involved in the distinction

between homogeneous and heterogeneous quantities, (Euc. v. def. 4.),

which has long been received in Geometry, but led only to negative con-

sequences, till it fell into the hands of Legendre. The proposition which

he deduces from it is, that if two angles of one triangle be equal to two an-

gles of another, the third angles of these triangles are also equal. For, it

is evident, that when two angles of a triangle are given, and also the side

between them, the third angle is thereby determined ; so that if A and B
be any two angles of a triangle, P the side interjacent, and C the third an-

gle, C is determined, as to its magnitude, by A, B and P ; and, besides

these, there is no other quantity whatever which can affect the magnitude

of C. This is plain, because if A, B and P are given, the triangle can be

constructed, all the triangles in which A, B and P are the same, being equal

to one another.

But of the quantities by which C is determined, P cannot be one ; for if

it were, then C must be Sl, function of the quantities A, B, P ; that is to say,

the value of C can be expressed by some combination of the quantities A,

B and P. An equation, therefore, may exist between the quantities A, B,

C and P ; and consequently the value of P is equal to some combination,

that is, to some fimction of the quantities A, B and C ; but this is impossi-

ble, P being a line, and A, B, C being angles ; so that no function of the

first of these quantities cfin be equal to any function of the other three. The
angle C must therefore be determined by the angles A and B alone, without

any regard to the magnitude of P, the side interjacent. Hence in all trian-

gles that have two angles in one equal to two in another, each to each, the

third angles are also equal.

Now, this being demonstrated, it is easy to prove that the three angles of

any triangle are equal to two right angles.

Let ABC be a triangle right angled at A, draw AD perpendicular to

BC. The triangles ABD, ABC have the an- ^
gles BAG, BOA right angles, and the angle

B common to both ; therefore by what has just

been proved, their third angles BAD, BCA are

also equal. In the same way it is shewn, that

CAD is equal to CBA ; therefore the two an-

gles, BAD, CAD are equal to the two BCA,
CBA; but BAD+CAD is equal to a right B
angle, therefore the angles BCA, CBA are together equal to a right angle,

and consequently the three angles of the right angled triangle ABC are

equal to two right angles.

And since it is proved that the oblique angles of every right angled

triangle are equal to one right angle, and since every triangle niay be

divided into two right angled triangles, the four oblique angles of which are

equal to the three angles of the triangle, therefore the three angles of every

triar.gle are equal to two right angles.

Though this method of treating the subject is strictly demonstrative, yet,

as the reasoning in the first of the two preceding demonstrations is not per-

haps sufficiently simple to be apprehended by those just entering on mathe-

matical studies, I shall submit to the reader another method, not liable to

the same objection, which I know, from experience, to be of use in explain
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ing the Elements. It proceeds, like that of the French Geometer, by de*

monstrating, in the first place, that the angles of any triangle are together

equal to two right angles, and deducing from thence, that two lines, which

make with a third line the interior angles, less than two right angles, must

meet if produced. The reasoning used to domonsuate the first of these

propositions may be objected to by some as involving the idea of motion, and

ihe transference of a line from one place to another. This, however, is no
more than Euclid has done himself on some occasions ; and when it furnish*

es so short a road to the truth as in tliu present instance, and does not im«

pair the evidence of the conclusion, it seems to be in no respect inconsistent

with the utmost rigour of demonstration. It is of im|)ortanco in explaining

the Elements of Science, to connect truths by the shortest chain possible ;

and till that is done, we can never consider them as being placed in their

natural order. The reasoning in the first of the following propositions is so

simple, that it seems hardly susceptible of abbreviation, and it has the ad-*

vantage of connecting immediately two truths so much alike, that one

might conclude, even from the bare enunciations, that iliey are but difTureut

cases of the same general theorem, viz. That all the angles about a point,

uid all the exterior angles of any rectilineal figure, are constantly of the

same magnitude, and equal to four right angles.
• #'

DEFINITION.

If, while one extremity of a straight line re-

mains fixed at A, the line itself turns about that

|Kiint from the position AB to the position AC, it

is said to describe the angle BAG contained by
the lino AB and AC.

CoR. If a line turn about a point from the position AC till it come into

the ])08ition AC again, it describes angles which are together equal to four

right angles. This is evident from the second Cor. to the 15th. I.

PROP. I.

.\U the exterior angles of any rectilineal figure are together equal to four

right angles.

1. Let the rectilineal fij^ire be the triangle ABC, of which the exterior

angles are DC.\, FAB, GBC; these angles are together equ-il to f(nir

rig'it angles.

Let the lino CD, placed in the direction of BC produced, turn about the

point C till it coincide with CE,a part of the side CA,fiiid liuve described
ihe exterior angle DCE or DCA. Let it then be carritd along the line

CA, till it bo in the position AF, that is, in the direction of CA produced,
and the point A remaining tixed, l<;l it turn about A till il describe the
angle FAB, and coincide with a part of the line AB. Let it next be car-

ried along AB till it come into the position BG, and by turning about B
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let it describe the angle GBC. so

as to coincide with a part of BC.
Lastly, Let it be carried along BC
till it coincide with CD, its iirst

position. Then, because the line

CD has turned about one ot' its

extremities till it has come into

the position CD again, it has by

the corollary to the above defini-

tion described angles which are

together equal to four right an-

gles ; but the angles which it

has described are the three ex-

terior angles of the triangle ABC,
therefore the exterior angles of

the triangle ABC are equal to

four right angles.

2. If the rectilineal figure have any number of sides, the proposition is

demonstrated just as in the case of a triangle. Therefore all the exterior

angles of any rectilineal figure are together equal to four right angles.

Cor. 1. Hence, all the interior angles of any triangle are equal to two
right angles, f^or all the angles of the triangle, both exterior and interior,

are equal to six right angles, and the exterior being equal to four right

angles, the interior are equal to two right angles.

Cor. 2. An exterior angle of any triangle is equal to the two interior and
opposite, or the angle DCA is equal to the angles CAB, ABC. For the

angles CAB, ABC, BCA are equal to two right angles; and the angles

ACD, ACB are also (13. 1.) equal to two right angles ; therefore the three

angles CAB, ABC, BCA are equal to the two ACD, ACB ; and taking

ACB from both, the angle ACD is equal to the two angles CAB, ABC.
Cor. 3. The interior angles of any rectilineal figure are equal to twice

as many right angles as the figure has sides, wanting four. For all the

angles exterior and interior are equal to twice as many rigiit angles as the

figure has sides ; but the exterior are equal to four right angles ; therefoie

the interior are equal to twice as many right angles as the figure has sides
wanting four.

PROP. IL

Two straight lines, which make with a third line the interior angles on
the same side of it less than two right angles, will meet on that side, if pro-

duced far enough.

Let the straight lines AB, CD, make with AC the two angles BAC.
DCA less than two right angles ; AB and CD -will meet if produced toward
B and D.

In AB take AF=AC
;
join CF, produce BA to H, and through C draw

CE, making the angle ACE equal to the angle CAII.
Because AC is equal to AF, the angles AFC, ACF aie also equal (5
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I.) ; but the exterior angle HAC is equal to the two interior and opposite

angles ACF, AFC, and therefore it is double of either of them, as of ACF.
Now ACE is equal to HAC by construction, therefore ACE is double of

ACF, and is bisected by the line CF. In the same manner, if FG be taken

equal to FC, and if CG be drawn, it may be shewn that CG bisects the

angle FCE, and so on continually. But if from a magnitude, as the an-

gle ACE, there be taken its half, and from the remainder FCE its

half FCG, and from the remainder GCE its half, &c. a remainder will at

length be found less than the giren angle DCE.*

Let GCE be the angle, whose half ECK is Ua» than DCE, then •

straight line CK is found, which falls bet^yeen CD and CE, but never-

theless meets the lino AB in Iv. Therefore CD, if produced, must meet
AB in a point between G and K.
This demonstration is indirect ; but this proposition, if the definition of

parallels were changed, as suggested at p. 291, would not be necessary ,

and the proof, that lines equally inclined to any one line must be bo to

every line, would follow directly from the angles of a triangle being equal

tu two right angles. The doctrine of parallel lines woidd in tliis manner
be freed from all difficulty.

PROP. 111. or 29. I.Euclid.

If a straight line fall on two narallcl straight lines, it makes the alternate

angles equ^ to one another ; the exterior equal to the interior and oppo-
site on the same side ; and likewise the two interior angles, on the same
kido equal to two right angles.

Let the straight line £F fall on
the parallel straight lines AB,
CD ; the alternate angles AGH,
Glin are equal, the exterior angle

EGU is equal to the interior and
opposite GHD ; and the two inte-

rior angles BGH, GHD are equal

'.o two light angles.

For if AGH be not equal to

GHD, let it be greater, then add-

ing B(iH to both, the angles

AGH, HGB are greater than the

• Prop. 1. I Sup. Th« reference of this proposition inrolves nothing incois"»tent witk
flood rvaaoniosr, as the demonstration of it doe« not dejiend on any thing that has gone Lefoi*.

to that it mfj be inuoduced in any part of the Eleia ':iu.

38
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angles DHG, HGB. But AGH, HGB are equal to two right angles (13.

1 .) ; therefore BGH, GHD are less than two right angles, and therefore ihe

lines AB, CD will meet, by the last proposition, if produced toward B and

D. But they do not meetj for they are parallel by hypotheses, and there-

fore the angles AGH, GHD are not unequal, that is, they are equal to one

another.

Now the angle AGH is equal to EGB, because these are vertical, and

it has also been shewn to be equal to GHD, therefore EGB and GHD are

equal. Lastly, to each of the equal angles EGB, GHD add the angle

BGH, then the two EGB, BGH are equal to the two DHG, BGH. But

EGB, BGH are equal to two right angles (13. l.),therefore BGH, GHD
are also equal to two right angles.

The following proposition is placed here, because it is more connected

with the First Book than with any other. It is useful for explaining the

nature of Hadley's sextant; and, though involved in the explanations usual-

ly given of that instrument, it has not, I believe, been hitherto considered as

a distinct Geometrical Proposition, though very well entitled to be so on ac-

count of its simplicity and elegance, as well as its utility.

THEOREM.

If an exterior angle of a triangle be bisected, and also one of the interior

and opposite, the angle contained by the bisecting lines is equal to half the

other interior and opposite angle of the triangle.

Let the exterior angle ACD of the triangle ABC be bisected by the

straight line CE, and the interior and opposite ABC by the straight line

BE, the angle BEC is equal to half the angle BAG.
The line CE, BE will meet ; for since the angle ACD is greater than

ABC, the half of ACD is greater than the half of ABC, that is, ECD
is greater than EBC ; add

EGB to both, and the two Jg
angles ECD, EGB are A
greater than EBC, ECB.
But ECD, ECB are equal

to two right angles ; there-

fore ECB, EBC are less

than two right angles, and
therefore the lines CE, BE
must meet on the same side ^ C 13
of BC on which the trian

gle ABC is. Let them meet in E.
Because DCE is the exterior angle of the triangle BCE, it is equal to

the two angles CBE, BEC, and therefore twice the angle DCE, that is, the

angle DCx\ is equal to twice the angles CBE and BEC. But twice the

aiigle CBE is equal to the angle ABC, therefore the angle DCA is equal

to the angle ABC, together with twice the angle BEC ; and the same an-
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gle DCA being the exterior angle of the triangle ABC, is e«^iial u» ilie two

myles ABC, CAB, wherefore the two angles ABC, CAB are equal to

A lie and twice BEC. Therefore, taking away ABC from both, there

remains the angle CAB e«iual to twice the angle BKC, or BEC ecjual to

Uic halfof BAC.

BOOK II.

I'he Demonstrations of this Book are no otherwise changed than by in-

troducing into them itome charartcrs similar to those of Algebra, which is

alwu^'s of great use where the reasoning turns on the addition or subtrac-

tion of rectangles. To Euclid's demonstrations, others are sometimes add-

ed, as Scholiums, in which the properties of the sections of hnes arc easily

demonstrated by Algebraical formulas.

BOOK UI.

DEFINITIONS.

The definition which Euclid makes the first of this Book is that of equal

circles, which he defines to be " those of which the diameters arc equal."

This is rejected from among tlie definitions, as being a Theorem, the truth

of which is proved by supposing the circles applied to one another, so that

their centres may coincide, for the whole of the one must then coincide with
the whole of the other. The converse, viz. That circles which are equal

nave equal diameters, is proved in the same way.
Tiie definition of the angle of a segment is also omitted, becaui*e it does

not relate to a rectilineal angle, but to one understood to be contained be-

tween a straight line and a portion of the circumference of a circle. In like

manner, no notice is taken in the 16th proposition of the angle compreliend-

ed between the semicircle and the diameter, which is said by Euclid to be

greater than an acute rectilineal angle. The reason for these omissions has

iJreadv been assigned in the notes on the fifth definition of the first Hook

PROP. XX.

It has been remarked of this demonstration, that it takes for granted, tha

if two magnitudes be double of two others, each of each, the sum or di,jrer-

ence of the first two is double of the sum or difTerence of the other I wo.
which are two cases of the 1st and 5th of the jtli Book. The justness ol
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this remark cannot be denied ; and though the cases of the Propositions here

relerred to are the simplest of any, yet the truth of them ought not in strict-

ness to be assumed without proof. The proof is easily given. Let A and

B, C and D be four magnitudes, such that A=2C, and B=2D ; then A
+B=2(C+ D). For since A=C+ C, and B=D+ D, adding equals to

equals, A4-B= (C+ D)+ (C+ D)=2(C+ D). So also, if A be greater

than B, and therefore C greater than D, since A=C4-C, and B=D4-D,
taking equals from equals, A—B= (C—D)+ (C—D), that is, A—B=3
(C-D).

BOOK V.

The subject of proportion has been treated so differently by those who
have written on elementary geometry, and the method which Euclid has fol-

lowed has been so often, and so inconsiderately censured, that in these notes

it will not perhaps be more necessary to account for the changes that I have
made, than for those that I have not made. The changes are but few, and
relate to the language, not to the essence of the demonstrations ; they will

be explained after some of the definitions have been particularly considered

DEF. III.

The definition of ratio given here has been greatly extolled by some au-

thors ; but whatever value it may have in the eyes of a metaphysician, it

has but little in those of the geometer, because nothing concerning the pro-

perties of ratios, can be deduced from it. Dr. Barrow has very judiciously

remarked concerning it, " that Euclid had probably no other design in mak-
" ing this definition, th; n to give a general summary idea of ratio to begin-
*' ners, by premising this metaphysical definition to the more accurate defi-

" nitions of ratios that are equal to one another, or one of which is greater
*' or less than the other ; I call it a metaphysical, for it is not properly a ma-
" thematical definition, since nothingin mathematics depends on it, or is de-
" duced, nor, as I judge, can be deduced, from it." (Barrow's Lectures,

Lect. 3.) Dr. Simson thinks the definition has been added by some unskil-

ful editor; but there is no ground for that supposition, other than what ari-

ses from the definition being of no use. We may, however, well enough
imagine, that a certain idea of order and method induced Euclid to give

some general definition of ratio before he used the term in the definition of

equal ratios.

DEF. IV.

This definition is a little altered in the expression ; Euclid has it, thai

'magnitudes are said to have a ratio to one another, when the less can be
" multiplied so as to exceed the greater."
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DEF. V.

One of the chief obstacles to the ready understanding of the 5th Book of

Euclid, is the difficulty that most people find of reconciling the idea of pro-

portion wliich they have already acquired, with the account of it that is

given in this dctinition. Our first ideas of proportion, or of proportionality,

are got by trying to compare together the magnitude of external bodies
;

and though they be at first abundantly vague and incorrect, they are usually

rendered tolerably precise by the study of arithmetic ; from which we learn

to call four numbers proportionals, when they are such that the quotient

which arises from dividing the first by the second, (according to the com-
mon rule for division), is the same with the quotient that arises from divid-

ing tlic third by the fourth.

Now, as the operation of arithmetical division is applicable as readily to

any two magnitudes of the same kind, as to two numbers, the notion of pro-

portion thus obtained may be considered as perfectly general. For, in arith-

metic, aAcr fmding how of\en the divisor is contained in the dividend, we
multiply the remainder by 10, or 100, or 1000, or any power, as it is called,

of 10, and proceed to inquire how o(l the divisor is contained in this new
dividend-; and, if there be any remainder, we go on to multiply it by 10,

100, iic. as before, and to divide the product by the original divisor, and so

on, the division sometimes terminating when no remainder is leA, and some-

times going on ad infinitum, in consequence of a remainder being left at each

operation. Now, this process may easily be imitated with any two mag-
nitudes A and B, providing they be of the same kind, or such that the one

can bo multiplied so as to exceed the other. For, suppose that B is the

least of the two ; take B out of A as oft as it can be found, and let the quo-

tient be noted, and also the remainder, if there be any ; multiply this remain-

der by 1 0, or 1 00, d^c. so as to exceed B, and let B be taken out of the quan-

tity produced by this multiplication as oft as it can be found ; let the quotient

bo noted, and also tlie remainder, if tliere be any. Proceed with this remain-

der as before, and so on continually ; and it is evident, that we have an opera-

tion that is applicable to all magnitudes whatsoever, and that maybe perform-

ed with respect to any two lines, any two plane figures, or any two solids, <bc.

Now, when we have two magnitudes and two others, and find that the

first divided by tlie second, according to this method, gives the very same
series of quotients that the third does when divided by the fourth, we say of

these magnitudes, as we did of the numbers above descrilx'd, that the first

is to the second as the third to the fourth. There are only two more cir-

rumsiauces necessary to be considered, in order to bring us pr«-cisvly to

Eucliifd definition.

First, It is known from arithmetic, that the multiplication of tlie succes-

sive riMuuindorseachof them by 10, is equivalent to multiplyint; tin- cjuaniiiy

to be dividi'd by the product pf all those tens ; so that multiplyiivj, for ui-

staiice, the first remainder by 10, the second by 10, and tin* tliird l>y 10, i>

the same ihinjj, with respect to the quotient, as if the qu'intity to he divided

had beei at first multiplied by 1000 ; and therefore, our standard of tin; pro-

poniouulity of numbers may be expressed tlius : If the first multiplii-d any
nuinbei of times by 1 0, and then divided by the second, gives the same quo*



302 NOTES.

tient as when the third is muliplied as often by 10, and then divided by the

fourth, the four magnitudes are proportionals.

Again, it is evident, that there is no necessity in these muUiplications for

confining ourselves to 10, or the powers of 10, and that we do so, in arith-

metic, only for the conveniency of the decimal notation ; we may therefore

use any multipliers whatsoever, providing we use the same in both cases.

Hence, we have this definition of proportionals. When there are four mag-

nitudes, and any multiple whatsoever of the first, when divided by the

second, gives the same quotient with the like multiple of the third, when
divided by the fourth, the four magnitudes are proportionals, or the first

has the same ratio to the second that the third has to the fourth.

We are now arrived very nearly at Euclid's definition ; for, let A, B, C,'

D be four proportionals, according to the definition just given, and m any
number ; and let the multiple of A by m, that is mA, be divided by B ; and

first, let the quotient be the number n exactly, then also, when mC is divided

by D, the quotient will be n exactly. But when mA divided by B gives n

for the quotient, mA=wB by the nature of division, so that when mx\=nB,
mC=?iL), which is one of the conditions of Euclid's definition.

Again, when mA is divided by B, let the division not be exactly perform-

ed, but let n be a whole number less than the exact quotient, then wB/
mA, or mA/nB ; and, for the same reason, mC^nD, which is another of

the conditions of Euclid's definition.

Lastly, when mA is divided by B, let n be a whole number greater than

the exact quotient, then mA^?iB, and because n is also greater than the

quotient of mC divided by D, (which is the same with the other quotient),

therefore mC^^nD.
Therefore, uniting all these three conditions, we call A, B, C, D, propor-

tionals, M'hen they are such, that if mA/'nB, mC /nD ; if mA=raB, mC=
nD ; and if mA/wB, mC/wD, m and n being any numbers whatsoever.

Now, this is exactly the criterion of proportionality established by Euclid in

the 5th definition, and is derived here by generalizing the common and most

familiar idea of proportion.

It appears from this, that the condition of mA containing B, whether
with or without a remainder, as often as mC contains D, with or without a

remainder, and of this being the case whatever value be assigned to the

number m, includes in it all the three conditions that are mentioned in Eu-
clid's definition ; and hence, that definition may be expressed a little more
simply by s;iying, thatybz^r magnitudes are 'proportionals, when any multiple of

the first contains the second, {xoith or without remainder,) as oft as the same mul-

tiple of the third contains thefourth. But, though this definition is certainly,

in the expression, more simple than Euclid's, it is not, as will be found on

trial, so easily applied to the purpose of demonstration. The three conditions

which Euclid brings together in his definition, though they somewhat em-
barrass the expression of it, have the advantage of rendering the demon-
strations more simple than they would otherwise be, by avoiding all discus-

sion about the magnitude of the remainder left, after B is taken out of mA as

oft as it can be found. All the attempts, indeed, that have been made to de-

monstrate the properties of proportionals rigorously, by means of other defini-

tions than Euclid's,only serve to evince the excellence of the method follow

«d by the Greek Geometer, and his singular address in the application of if



NOTES. 303

The great objection to the other methods is, that if they are meant to b«

rigorous, they require two demonstrations to every proposition, one when
the division of mk into parts equal to B can be exactly performed, the other

when It cannot be exactly performed whatever value be assigned to m, or

when A and B are what is called incommensurable ; and this last case will

generally be found to require an indirect demonstration, or a reductio ad ab-

ttardum.

M. D'AIembert, speaking of the doctrine of proptmion, in a discourse

that contains many excellent observations, but in which he has overlooked

Euclid's manner of treating this subject entirely, has the following remark:
** On ne peut d^montrer que de cette manidre, (la rMuction k absurde,) la

'* plupart des propositions qui regardent les incommensurables. L'idee de
" I'inrini entre au moins implicitemens dans la notion de ces sortes de quan-
" titcs ; et comme nous n'avons qu'une idee negative de Tinfini, on no peut
" demontrer directement, et a priori, tout ce qui conceme Tinfini mathema^
"tique." [Encyclopidte, mot Geomitrie.)

This remark sets in a strong and just light the difTiculty of demonstrating

the pro[>08itions that regard the proportion of incommunsuruble magnitudes,

witluiiit having recourse to the reductio ad absurdum : but it is surprising,

that M. D'AIembert, a geometer no lcs9 learned than profound, should

have ncglt'ctdd to make mention of Euclid's method, the only one in which
the ditHculty he states is completely overcome. It is overcome by the in-

troduction of the idea of indefinitude, (if I may be permitted to use the word),

instead of the idea of infinity ; for m and n, the multipliers employed, are

supposed to be indefinite, or to admit of all possible values, and it is by the

skilful use of this condition that the necessity of indirect demonstrations is

avoided. In the whole of geometry, I know not that any happier invention

is to be found ; and it is worth remarking, that Euclid appears in another

of his works to have availed himself of the idea of indefinitude with the

same success, viz. in his books of Porisms, which have been restored by

Dr. 8imson,and in which the whole analysis turned on that idea, as I have
shown at length in the Third Volume of the Transactions of the Royal So-

ciety of Edinburgh. The investigations of these propositions were founded

entirely on the principle of certain magnitudes admitting of innumerable

values ; and the methods of reasoning concerning them seem to have been

extremely similar to those employed in the fifth of the Elements. It is

curious to remark this analogy between the dififerent works of the same
author ; and to consider, that the skill, in the conduct of this very refined

and ingenious artifice, acquired in treating the properties of pro{)ortional8|

may have er.abled Euclid to succeed so well in treating the still more dif-

ficult subject of Porisms.

Viewing in this light Euclid's manner of treating proportion, I had no

desire to change any thing in the principle of his demonstrations. I have

snly sought to improve the language of tliem, by introducing a concise

mode of expression, of the same nature with that which we use in arith-

metic, and in algebra. Ordinary language conveys the ideas of the dilTe-

ren». operations supposed to be performed in these demonstraliona so slowly,

snd breaks them down into so many parts, that they make not a sufficient

impre:i8ion on the understandinu. This indred will generally happen when
the tilings treated of are not rrprescnud to iln- ?ttiises by Diagrams, a«
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tKey cannot be when we reason concerning magnitude in general, as in this

part of the Elements. Here we ought certainly to adopt the language of

arithmetic or algebra, which by its shortness, and the rapidity with which
it places objects before us, makes up in the best manner possible for being

merely a conventional language, and using symbols that have no resem-

blance to the things expressed by them. Such a language, therefore, I

have endeavoured to introduce here ; and I am convinced, that if it shall

be found an improvement, it is the only one of which the fifth of Euclid will

admit. In other respects I have followed Dr. Simson's edition to the accu-

racy of which it would be difficult to make any addition.

In one thing I must observe, that the doctrine of proportion, as laid down
here, is meant to be more general than in Euclid's Elements. It is intended

to include the properties of proportional numbers as well as of all magni-
tudes. Euclid has not this design, for he has given a definition of propor-

tional numbers in the seventh Book, very difl'erent from that of proportional

magnitudes in the fifth; and it is not easy to justify the logic of this man-
ner of proceeding ; for we can never speak of two numbers and two rnagiii-

tudes both having the same ratios, unless the word ratio have in both cases

the same signification. All the propositions about proportionals here
given are therefore understood to be applicable to numbers ; and accord-

ingly, in the eighth Book, the proposition that proves equiangular parallelo-

grams to be in a ratio compounded of the ratios of the numbers proportional

to their sides, is demonstrated by help of the propositions of the fifth Book.
On account of this, the word quantiti/,YaiheTtha.nmagnitude, ought in strict-

ness to have been used in the enunciation of these propositions, because we
employ the word Quantity to denote not only things extended, to which
alone we give the name of Magnitude, but also numbers. It will be suffi-

cient, however, to remark, that all the propositions respecting the ratios of

magnitudes relate equally to all things of which multiples can be taken, that

is, to all that is usually expressed by the word Quantity in its most extend-

ed signification, taking care always to observe, that ratio takes place only
among like quantities, (See Def. 4.)

DEF. X.

The definition of compound ratio was first given accurately by Dr. Simson
,

for, though Euclid used the term, he did so without defining it. I have
olaced this definition before those of duplicate and triplicate ratio, as it is in

"Tact more general, and as the relation of all the three definitions is best seen
when they are ranged in this order. It is then plain, that two equal ratios

compound a ratio duplicate of either of them ; three equal ratios, a ratio

triplicate of either of them, &c.
It was justly observed by Dr. Simson, that the expression, compound ratio,

is introduced merely to prevent circumlocution, and for the sake principals
of enunciating those propositions with conciseness that are demonstrated bv
reasoning ex (pquo, that is, by reasoning from the 22d or 23d of this Book.
This will be evident to any one who considers carefully the Prop. F. of this,

or the 23d of the 6th Book
An objection which naturally occurs to the use of the term compound ra.io,

arises from its not being evident how the ratios described in the definition
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determine in any way the ratio which they are said to compound, since the

magnitudes compounding them are assumed at pleasure. It may be of use

for removing this difficulty, to state the matter as follows : if there be any
number of ratios (among magnitudes of the same kind) such that the coa>

sequent of any of them is the antecedent of that which immediately fol>

lows, the first of the antecedents has to the last of the consequents a ratio

which evidently depends on the intermediate ratios, because if they are de-

termined, it is determined also ; and this dependence ofone ratio on all the

other ratios, is expressed by saying that it is compounded of them. Thus,

if -^, YTt fv • ~pt he any series of ratio*, such aa described above, the ratio

» A B
4r, or of A to E, is said to be compounded of the rttios -rr-, -p, dec. The ratio

•=r, is evidently determined by the ratios -rp, -j^, A,c. because if each of the
lit D Lf

Utter is fixed and invariable, the former cannot change. The exact nature

of this dependence, and how the one thing is determined by the other, it is

not the business of the detinitioo to explain, but merely to give a name to

a relation which it may be of importance to consider more attentively

BOOK VI.

DEFINITION II.

This definition is changed from that o( reciprocalfigures, which was ot no
«ee, to one that conespouds to the language tised in the 14th and 15th

propositions, and in other parts of geometry.

PROP. A, B, C. &c.

Nine propositions are added to this Book on account of their utility and
their connection with this part of the Elements. The furst four of them are

in Dr. Simson's edition, and among these Prop. A is given immediately
aAer the third, being, in fact, a second case of that proposition, and capable

of being included with it, in one enunciation. Prop. D is remarkable for

being a theorem of Ptolemy the Astronomer, in his MByalti 2'vrT«(i(, and the

foundation of the construction of his trigonometrical tables. Prop. E is the

simplest case of the former ; it is also useful in trigonometry, and, under

another form, was the 97th, or, in some editions, the 94th of Euclid's Data.

The propositions F and G are very useful properties of the circle, and are

taken trom the Loci Plani uf ApoUonius. Prop. H is a very remarkable pro-

perty of the triangle ; and K is a proposition which, though it has been

hitherto considered as belonging particularly to trigonometry, is so often of

use in other parts of the mathematics, that it may be properly ranked amony
elementary theorems of Geomeir)-.

39
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BOOK I.

PROP. V. and VI, <fec.

The demonstrations of the 5th and 6th propositions require the method

of exhaustions, that is to say, they prove a certain property to belong to the

circle, because it belongs to the rectilineal figures inscribed in it, or described

about it according to a certain law, in the case when those figures ap-

proach to the circles so nearly as not to fall short of it or to exeeed it, by

any assignable difference. This principle is general, and is the only one

by which we can possibly compare curvilineal with rectilineal spaceSj or the

length of curve lines with the length of straight lines, whether we. follow

the methods of the ancient or of the modern geometers. It is therefore a

great injustice to the latter methods to represent them as standing on a foun-

dation less secure than the former ; they stand in reality on the same, and

the only difference is, that the application of the principle, common to them
both, is more general and expeditious in the one case than in the other.

This identity of principle, and affinity of the methods used in the elementary

:ind the higher mathematics, it seems the most necessary to observe, that

some learned mathematicians have appeared not to be sufficiently aware of

it, and have eveti endeavoured to demonstrate the contrary. An instance

of this is to be met with in the preface of the valuable edition of the works
of Archimedes, lately printed at Oxford. In that preface, Torelli, the learn-

ed commentator, whose labours have done so much to elucidate the writ-

ings of the Greek Geometer, but who is so unwilling to acknowledge the

merit of the modern analysis, undertakes to prove, that it is impossible, from
the relation which the rectilineal figures inscribed in, and circumscribed

about, a given curve have to one another, to conclude any thing concerning
the properties of the curvilineal space itself, except in certain circumstances
which he has not precisely described. With this view he attempts to show,
that if we are to reason from the relation which certair* , tJctilineal figures

belonging to the circle have to one another, notwithstanding that those

figures may approach so near to the circular spaces within which they are

inscribed, as not to differ from them by any assignable magnitude, we shall

be led into error, and shall seem to prove, that the circle is to the square of

its diameter exactly as 3 to 4. Now, as this is a conclusion which the dis-

coveries of Archimedes himself prove so clearly to be false, Torelli argues,

that the principle from which it is deduced must be false also ; and in this

he would no doubt be right, if his former conclusion had been fairly drawn.
But the truth is, that a very gross paralogism is to be found in that part of
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hiB reasoning, where he makes a transition from the ratios of the small reel-

angles, inscribed in the circular spaces, to the ratios of the sums of those

rectangles, or of the whole rectilineal figiures. In doing this, he takes for

granted a proposition, which, it is wonderful, that one who had studied

geometry in the school of Archimedes, should for a moment have suppos*

ed to be true. The proposition is this : If A, B, C, D, E, F, be any nun>-

ber of magnitudes, and a, 6, c, </, e,/, as many others ; and if

A : B : : a : ft,

C : D : : c : rf,

E : F : : « : /, then the sum of A, C and E will be to the sum of B, D and
P, as the stun of a, e and e, to the sum of 6, d and/, or A+C+E : B+D
+ F : : a4-c4-« : f>-\-d-{-f. Now, this proposition, which Torelli supposes

to be perfectly general, is not true, except in two cases, viz. either first,

when A : C : : a : e, and
A : E : : a : e ; and consequently,

B : D : : & : i. and
B : F : : b : fi or, secondly, when all the ratios of A to B, C to D, E

to F, &c. are equal to one another. To demonstrate this, let us suppose
that there are four magnitudes, and four others,

thus A : B : : a : b, and
C : D : : e : d, then we cannot have

A+C : B+D :: a+e : ft+t/, unless either A : C : : a : e,andB : D : : i:

d i or A : C : : b : d, and consequently a : b : : e : d.

Take a magnitude K, such that a : e : : A : K, and another L, such that

b : d : : B : L; and suppose it true, that A+C : B+D :

:

a-f-e : b-^-d. Then, because by inversion ; K : A : : e : a,

and, by hypothesis, A:B::a:b, and also B :L:: b:d,

ex Bquo, K : L : : e : (f ; and consequently, K : L :

:

C : D.
Again, because A : K : : a : e, by addition,

A-fK : K : : a+e : e ; and for the same reaaon,

B-j-L : L : : b-^d : rf, or, by inversion,

L : B+L : : d : b-^-d. And, since it has been shewn, that

K : L :: e : di therefore, ex Kquo,

K,A,B,L,
e, a, b, d.

A+K,K,L,B+L,
a-f-c, e, d, b-if-d.

A+K : B-j-L : : a-\-e : b-\-d; but by hypothesis,

A-hC : B-l-D : : a+c : b+d, therefore

K+K: A-f-C :: B+ L : B-|-D.

Now, first, let K and C he supposed equal, then it is evident that L and

D are also equal ; and therefore, since by construction a : e : : A : K, we
have also a : c : : A : C ; and, for the same reason, & : <f : : B : D, and

these analogies from the first of the two conditions, of which one is affirmed

above to be always essential to the truth of Torelli's proposition

Next, if K be greater than C, then, since

A-f-K : A-J-C : : B+L : B-|-D, by division,

A-fK : K—C :: B-|-L : L— D. But, as was shewn,

K : li : : C : D, by conversion and alternation,

K—C : K : : L—D : L, therefore, ex aequo.
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A+K : K : : B+L : L, and lastly, by division,

A : K : : B : L, or A : B : : K : L, that is,

A : B : : C : D.
Wherefore, in this case the ratio of A to B is equal to that of C to D,

and consequently, the ratio of a to b equal to that of c to d. The same
may be shewn, if K is less than C ; therefore in every case there are con-

ditions necessary to the truth of Torelli's proposition, which he does not

take into account, and which, as is easily shewn, do not belong to the mag-

nitudes to which he applies it.

In consequence of this, the conclusion which he meant to establish re-

specting the circle, falls entirely to the ground, and with it the general in-

ference aimed against the modern analysis.

It will not, I hope, be imagined, that I have taken notice of these cir-

cumstances with any design to lessen the reputation of the learned Italian,

who has in so many respects deserved well of the mathematical sciences,

or to detract from the value of a posthumous work, which by its elegance

and correctness, does so much honour to the English editors. But I would

warn the student against that narrow spirit which seeks to insinuate itself

even into the abstractions of geometry, and would persuade us, that ele-

gance, nay, truth itself, are possessed exclusively by the ancient methods

of demonstration. The high tone in which Torelli censures the modern ma-
thematics is imposing, as it is assumed by one who had studied the writings

of Archimedes with uncommon diligence. His errors are on that account^

the more dangerous, and require to be the more carefully pointed out.

PROP. IX.

This enunciation is the same with that of the third of the Dimensio Cir-

cuit of Archimedes ; but the demonstration is different, though it proceeds

like that of the Greek Geometer, by the continual bisection of the 6th part

of the circumference.

The limits of the circumference are thus assigned ; and the method of

bringing it about, notwithstanding many quantities are neglected in the arith-

metical operations, that the errors shall in one case be all on the side of de-

fect, and in another all on the side of excess (in which I have followed Ar-

chimedes,) deserves particularly to be observed, as affording a good intro-

duction to t^e general methods of approximation.

BOOK II.

DEF. VIII. and PROP. XX.

Solid angles, which are defined here in the same manner as in Eaclid,
are magnitudes of a very peculiar kind, and are particularly to be remarked
Tor not admitting of that accurate comparison, one with another, which is
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common in the other subjects of geometrical inrestigation. It cannot, for

example, be said of one solid angle, that it is the half, or the double of an*

othei; solid angle ; nor did any geometer ever think of proposing the pro*

blem of bisecting a given solid angle. In a word, no multiple or sub-mul*

tiple of such an angle caa be taken, and we hare no way of expounding,

even to the simplest cases, th« ratio which one of them bears to another.

In this respect, therefore, a solid angle differs from every other magni-
tude that is the subject of mathematical reasoning, all of which have this

common property, that multiples and sub-multiples of them may be found.

It is not our business here to inquire into tlie reason of this anomaly, but it

18 plain, that on account of it, our knowledge of tlie nature and the proper*

ties of such angles can never be very far extended, and that our reason*

ings concerning them ;nust be chiefly confined to the relations of the plane

angles, by which they are contained. One of the most remarkable of those

relations is that which is demonstrated in the 21st of this Book, and which
is, that all the plane angles which contain any solid angle must together

be less thin four right angles. This pcbpoeition is the 21st of the 1 1th of

Euclid.

This proposition, however, is subject to a restriction in certain cases,

which, I believe, was first observed by M. le Sage of Geneva, in a com*
munication to the Academy of Sciences of Paris in 1756. When the sec-

tion of the pyramid formed by the planes that contain the solid angle is a
figure that has none of its angles exterior, such as a triangle, a paralielo>

gram, 6ic. the truth of the proposition just enunciated cauuot be question-

ed- But, when the aforesaid section is a figure like that wliich is annexed,
via. ABCD, having some angles such
as BDC, extetior, or, as they are some-
times called, re-entering angles, the

proposition is not necessarily true
;

and it is plain, that in such cases the

demonstration which we have given,

and which is the same with Euclid's,

will no longer apply. Indeed, it were
easy to show, that on bases of this

kind, by multiplying the number of

sides, solid angles may be formed, such
that the plane angles which contain them shall exceed four right angles by
any quantity assigned. An illustration of this from the properties of the

sphere is perhaps the simplest of all others. Suppose that on the surface

of a hemisphere there is described a figure bounded by any number of arcs

of great circles making angles with one another, on opposite sides alter-

nately, the plane angles at the centre of the sphere that stand on these arcs

may endently exceed four rieht angles, and that too, by multipiyint; and

extending the arcs in any assigned ratio. Now, these plane angles con-

tain a solid angle at the centre of the sphere, according to the definition of

a solid angle.

We are to understand the proposition in the text, therefore, to be true

only of those solid angles in which the inclination of the plane anjjles are

all the same way, or all directed toward the interior of the figure. To dis-

tinguish this class of solid angles from that to which the proposition ooes
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not apjily, it is perhaps best to make use of this criterion, that they are such

that when any two points whatsoever are taken in the planes that contain

the solid angle, the straight Une, joining those points, falls wholly \yithin

the solid angle ; or thus, they are such, that a straight line cannot meet the

planes which contain them in more than two points. It is thus, too, that I

would distinguish a plane figure that has none of its angles exterior, by

saying, that it is a rectilineal figure, such that a straight line cannot meet

the boundary of it in more than two points.

We, therefore, distinguish solid angles into two species : one in which
the bounding planes can be intersected by a straight line only in two

points ; and another where the bounding planes may be intersected by a

straight line in more than two points : to the first of these the proposition

in the text applies, to the second it does not.

Whether Euclid meant entirely to exclude the consideration of figures

of the latter kind, in all that he has said of solids, and of solid angles, it is

not now easy to determine : it is certain, that his definitions involve no

such exclusion ; and as the introduction of any limitation would conside-

rably embarrass these definitions, and render them difficult to be understood

by a beginner, I have left it out, reserving to this place a fuller explanation

of the difficulty. I cannot conclude this note without remarking, with the

historian of the Academy, that it is extremely singular, that not One of all

those who had read or explained Euclid before M. le Sage, appears to

have been sensible of this mistake. (Memoires de VAcad. des Sciences,

1756, Hist. p. 77.) A circumstance that renders this still more singular

is, that another mistake of Euclid on the same subject, and perhaps of all

other geometers, escaped M. le Sage also, and was first discovered by

Dr. Simson, as will presently appear.

PROP. IV.

This very elegant demonstration is from Legendre, and is much easiei

than that of Euclid.

The demonstration given here of the 6th is also greatly simpler thar

that of Euclid. It has even an advantage that does not belong to Legen
dre's, that of requiring no particular construction or determination of any

one of the lines, but reasoning from properties common to every part a
them. The simplification, when it can be introduced, which, however
does not appear to be always possible, is, perhaps, the greatest improve

meat that can be made on an elementary demonstration.

PROP. XIX.

The problem contained in this proposition, of drawing a straight line per

pendicular to two straight lines not in the same plane, is certainly to be ac-

counted elementary, although not given in any book of elementary geome-

try that I know of before that of Legendre. The solution given here is

more simple than his, or than any other that I have yet met with : it also

leads more easily, if it be required, to a trigonometrical computation.
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BOOK m.

DEF. II. and PROP. I.

These relate to similar and equal solids, a subject on which mistakes har«

prevailed not unlike to that which has just been mentioned. The equality

of solids, it is natural to expect, must be proved like the equality of plane

figures, by showing that they may be made to coincide, or to occupy the

same space. But, though it be true that all solids which can be shewn to

coincide are equal and similar, yet it does not hold conversely, that all solids

which are equal and similar can be made to coincide. Though this asser-

tion may ap{>ear somewhat paradoxical, yet the proof of it is extremely

simple.

Let ABC be an isosceles triangle, of which the equal sides are AB and

AC ; from A draw A£ perpendicular to the base BC.and BC will be bisected

in E. F^rom E draw ED perpendicular to the

plane ABC, and from D, any point in it, draw

DA, DB, DC to the three angles of the tri-

angle ABC' The pyramid DABC is divided

into two pyramids DABE, DACE, which,

iliough their equality will not be disputed,

cannot be so applied to one another as to coin*

cide. For, though the triangles ABE, ACE
are equal, BE being equal to CE, EA common
to both, and the angles AEB, AEC equal, be-

cause they are right angles, yet if those two

triangles be applied to one another, so as to

coincide, the solid DACE will nevertheless,

as is evident, fall without the solid D.\BK, for the two solids will be on the
opposite sides of the plane ABE. In the same way, though all the planes
of the pyramid DABE may easily be shewn to be equal to those of the py-
ramid DACE, each to each ;

yet will the pjrramids themselves never coin-
cide, tliough the equal planes be applied to one anoiher, because they are
on the opposite sides of those planes.

It may be said, then, on what ground do we conclude the pyramids to

be equal ? The answer is, because their construction is entirely the same,
and the conditions that determine the magnitude of the one identical with
those that determine the magnitude of the other. For the magnitude of
the pyramid DABE is determined by the magnitude of the triangle ABE,
the length of the line ED, and the position of ED, in respect of the plane
.\BE ; tliree circumstances that are precisely llje same in the two pyra-
mids, so that there is nothing that can determine one of them to be greater

than another

This reasoning appears perfectly conclusive and satisfactory ; and it

seems also vry certain, that there is no other principle equally simple, on
which the relation of the solids DABE, DACE to one another can be de-

termined. Neither is this a case that occurs rarely ; it is one, that, in the

comparison of magnitudes having three dimensions, pre-jcals itself eonu
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nually ; for, though two plane figures that are equal and similar can always
be made to coincide, yet, with regard to solids that are equal and similar, l
they have not a certain similarity in their position, there will be found iust

as many cases in which they cannot, as in which they can coincide. Even
figures described on surfaces, if they are not plane surfaces, may be equal

and similar without the possibility of coinciding. Thus, in the figure de-

scribed on the surface of a sphere, called a spherical triangle, if we suppose
it to be isosceles, and a perpendicular to be drawn from the vertex on the

base, it will not be doubted, that it is thus divided into two right angled
spherical triangles equal and similar to one another, and which, nev-erthe-

less, cannot be so laid on one another as to agree. The same holds in in-

numerable other instances, and therefore it is evident, that a principle, more
general and fundamental than that of the equality of coinciding figures,

ought to be introduced into Geometry. What this principle is has also ap-

peared very clearly in the course of these remarks ; and it is indeed no
other than the principle so celebrated in the philosophy of Leibnitz, under
the name of the sufficient reason. For it was shewn, that the pyra-

mids DABE and DACE are concluded to be equal, because each of them
is determined to be of a certain magnitude, rather than of any other, by
conditions that are the same in both, so that there is no reason for the one

Deing greater than the other. This Axiom may be rendered general by
saying, That things of which the magnitude is determined by conditions

that are exactly the same, are equal to one another ; or, it might be ex-

pressed thus ; Two magnitudes A and B are equal, when there is no rea-

son that A should exceed B, rather than that B should exceed A. Either

of these will serve as the fundamental principle for comparing geometrical

magnitudes of every kind ; they will apply in those cases where the coin-

cidence of magnitudes with one auotlier has no place ; and they will apply

with great readiness to the cases in which a coincidence may take place,

such as in the 4th, the 8th, or the 26th of the First Book of the Ele-

ments.

The only objection to this Axiom is, that it is somewhat of a metaphy-

sical kind, and belongs to the doctrine of the siificient reason, which is looked

on with a suspicious eye by some philosophers. But this is no solid olijec-

tion ; for such reasoning may be applied with the greatest safety to those

objects with the nature of which we are perfectly acquainted, and of which
we have complete definitions, as in pure mathematics. In physical ques

tions, the same principle cannot be applied with equal safety, because in

such cases we have seldom a complete definition of the thing we reason

about, or one that includes all its properties. Thus, when Archimedes prov-

ed the spherical figure of the earth, by reasoning on a principle of this sort,

he was led to a false conclusion, because he knew nothing of the rotation of

the earth on its axis, which places the particles of that body, though at

•equal distances from the centre, in circumstances very difllerent from one

another. But, concerning those things that are the creatures of the mind
altogether, like the objects of mathematical investigation, there can be no

danger of being misled by the principle of the sufficient reason, which at the

same time furnishes us with the only single Axiom, by help of which we
can compare together geometrical quantities, whether they be of one, ol

two, or of three dimensions.
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Legendre io his Elements has made the same remark that nas heen just

•tated, that there are solids and other Geometrical Magnitudes, which,

though similar and equal, cannot be brought to coincide with one another,

and he has distinguished them by the name of Symmetrical Magnitudes. He
has also given a very satisfactory and ingenious demonstration of the equa*

lity of certain solids of that sort, though not so concise as the nature of &
simple and elementary truth would seem to require, and consequently not

such as to render the axiom proposed aboTO altogether unnecessary

But a circumstance for which I cannot very well account is, that Legen>
dre, and after him Lacroix, ascribe to Simson the first mention of such solids

as we are here considering. Now I must be permitted to say, that no re-

mark to this purpose is to be found in any of the writings of Simson, wliich

have come tomy knowledge. He has indeed made an obsenration concerning
the Geometry of Solids, which was both new and important, viz. that solids

may have the condition which Euclid thought sufficient to determine their

quality, and may nevertheless be unequal ; whereas the observation made
here is, that solids may be equal and similar, and may yet want the condition

of being able to coincide with one another. These propositions are widely

different ; and how so accurate a writer as Legendre should have mistaken

the one for the other, is not easy to be explained. It must be observed,

that he does not seem in the least aware of the observation which Simson
has really made. Perhaps having himself made the remark we now speak

of, and on looking slightly into Simson, having found a limitation of the

usual description of equal solids, he had without much inquiry, set t down
an the same with his own notion ; and so, with a great deal of candour,

and some precipitation, he has ascribed to Simson a discovery which really

belonged to himself. This at least seems to be the most probable solution

of the difficulty.

I have entered into a fuller discussion of Legcndre's mistake than I

should otherwise have done, from having said, in the first edition of these

elements, in 1795, that I believed the non-coincidence of similar and equal

HulidR in certain circumstances, was then made for the first time. This it

in evident would have been a pretension as ridiculous as ill-founded, if the

same olmerA'ation had been made in a book like Simson's, which in this

coimtry was in every body's hands, and which I had myself professedly

studied with attention. As I have not seen any edition of Legendre's Ele-

ments earlier than that published in 1602, I am igrnorant whether he or 1

was the first in making the remark here referred to. That circumstance

is, however, immaterial ; for I am not interested about the originality of the

remark, though very much interested to show that I had no intenton of ap-

propriating to myself a discovery made by another.

Another observation on the subject of those solids, which, with Legendre,
we shall call Symmetrical, has occurred to me, which I did not at first

think of, viz. that Euclid himself certainly had these solids in view when he
formed his definition (as he very improperly calls it) ofequal and similar solida.

He says that those soUds are equal and similar, which are contained under

he same number of equal and similar planes. But this is not true, as Di.

.Simson has shewn in a passage just about to be quoted, because two soUda
may easily be assigned, bounded by the same numhe; of e({ual and similar

planes, which are obviously unequal, the one being contained within the

4U



314 NOTES. SUPPL. BOOK III.

other. Simson observes, that Euclid needed only to have added, that the

equal and similar planes must be similarly situated, to have made his des-

cription exact. Now, it is true, that this addition would have made it exact

in one respect, but would have rendered it imperfect in another ; for though

all the solids having the conditions here enumerated, are equal and similar,

many others are equal and similar which have not those conditions, that is,

though bounded by the same equal number of similar planes, those planes

are not similarly situated. The symmetrical solids have not their equal

and similarplanes similarly situated, but in an order and position directly con-

trary. Euclid, it is probable, was aware of this, and by seeking to render

the description of equal and similar solids so general, as to comprehend so-

lids of both kinds, has stript it of an essential condition, so that solids ob-

viously unequal are included in it, and has also been led into a very illogical

proceeding, that of defining the equality of solids, instead of proving it, as if

he had been at liberty to fix a new idea to the word equal every time that

he applied it to a new kind of magnitude. The nature of the difficulty he
had to contend with, will perhaps be the more readily admitted as an apo-

logy for this error, when it is considered that Simson, who had studied the

matter so carefully, as to set Euclid right in one particular, was himself

wrong in another, and has treated of equal and similar solids, so as to ex-

clude the symmetrical altogether, to which indeed he seems not to have at

all adverted.

I must, therefore, again repeat, that I do not think that this matter can

be treated in a way quite simple and elementary, and at the same time

general, without introducing the principle of the suficient reason as stated

above. It may then be demonstrated, that similar and equal solids are

those contained by the same number of equal and similar planes, either with

similar or contrary situations. If the word contrary is properly understood,

this description seems to be quite general.

Simson's remark, that solids may be unequal, though contained by the

same number of equal and similar planes, extends also to solid angles

which may be unequal, though contained by the same number of equal

plane angles. These remarks he published in the first edition of his Eu-
clid in 1756, the very same year that M. le Sage communicated to the

Academy of Sciences the observation on the subject of solid angles, men-
tioned in a former note ; and it is singular, that these two Geometers, with-

out any communication with one another, should almost at the same time

have made two discoveries very nearly connected, yet neither of them com-
prehending the whole truth, so that each is imperfect without the other.

Dr. Simson has shewn the truth of his remark, by the following reason-

ing.

" Let there be any plane rectilineal figure, as the triangle ABC, and from

a point D within it, draw the straight line DE at right angles to the piano

ABC ; in DE take DE, DF equal to one another, upon the opposite sides

of the plane, and let G be any point in EF
;
join DA , DB, DC , EA, EB,

EC ; FA. FB, FC ; GA, GB, GC : Because the straight line EDF is at

right angles to the plane ABC, it makes right angles with DA, DB, DC,
which it meets in that plane ; and in the triangles EDB, FDB, ED and
DB are equal to FD, and DB, each to each, and they contain right angles

;

therefore the base EB is equal to the base FB ; in the same manner E.\ is
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eqaa] to FA, and EC to FC : and in tlie triangles EBA, FDA, EB, BA ar«

equal to FB, BA, and the base EA is equal to the base FA ; wherefore

the angle EBA is equal to the angle FBA, and the triangle EBA equal

to the triangle FBA, and the other angles equal to the other angles ; there-

fore these triangles are similar: In the same manner the triangle EBC is

siinilar to the triangle FBC, and the triangle EAC to FAC ; therefore there

are two solid figures, each of which is contained by six triangles, one of them
by three triangles, the common Tcrtex of which is the point G, and their

bases the straight lines AB, BC, CA, and by three other triangles tlic com-
mon vertex of which is the point E, and their bases the same lines AB, BC,
CA. The other solid is contained by the same three triangles, the common
vertex of which is G, and their bases AB, BC, CA ; and by three other tri-

angles, of which the common vertex is the point F, and their bases the same
straight lines AB, BC, CA : Now, the three triangles GAB, GBC, GCA
are common to both solids, and the three others EAB, EBC, ECA, of the

first solid have been shown to be equal and similar to the three others,

FAB, FBC, FCA of the other solid, each to each ; therefore, these two
solids are contained by the same number of equal and similar planes : But
that they are not equal is manifest, because the first of them is contained in

the other : Therefore it is not universally true, that solids are equal which
are contained by the same number of equal and similar planes.**

'* Cor. From this it appears, that two unequal solid angles may be con-
tained by the same number of equal plane angles.**

" For the solid angle at B, which is contained by the four plane anjjles

EBA, EBC, GBA, GBC is not equal to the solid angle at the same point

B, which is contained by the four plane angles FBA, FBC, GBA, (iliC ;

for the last contains the other. And each of them is contained by four

plane angles, which are equal to one another, each to each, or are the self-

same, as has been proved : And indeed, there may be innumerable solid

angles all unequal to one another, which are each of them contained by
plane angles that are equal to one another, each to each. It is likewise

manifest, that the before-mentioned solids are not similar, since their solid

angles are not all equal.*'



PLANE TRIGONOMETRY.

DEFINITIONS, &c.

Trigonometry is defined in the text to be, the application of Number
to express the relations of the sides and angles of triangles. It depends

therefore, on the 47th of the first of Euclid, and on the 7th of the first of the

Supplement, the two propositions which do most immediately connect

together the sciences of Arithmetic and Geometry,

The sine of an angle is defined above in the usual way, viz. the perpen-

dicular drawn from one extremity of the arc, which measures the angle on

the radius passing through the other ; but in strictness the sine is not the

perpendicular itself, but the ratio of that perpendicular to the radius, for it

is this ratio which remains constant, while the angle continues the same,

though the radius vary. It might be convenient, therefore, to define the

sine to be the quotient which arises from dividing the perpendicular just

described by the radius of the circle.

So also, if one of the sides of a right angled triangle about the right an-

gle be divided by the other, the quotient is the tangent of the angle op-

posite to the first-mentioned side, &c. But though this is certainly the

rigorous way of conceiving the sines, tangents, &c. of angles, which are

in reality not magnitudes, but the ratios of magnitudes
;
yet as this idea is

a little more abstract than the common one, and would also involve some
change in the language of Trigonometry, at the same time that it would
in the end lead to nothing that is not attained by making the radius equal

to unity, I have adhered to the common method, though I have thought

it right to point out that which should in strictness be pursued.

A proposition is left out in the Plane Trigonometry, which the astro-

nomers make use of in order, when two sides of a triangle, and th^ angle

contained by them, are given, to find the angles at the base, without

making use of the sum or diflierence of the sides, which, in some cases,

when only the Logarithms of the sides are given, cannot be conveniently

found.
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THEOREM. •

If, at thegrecUer of any ttoosidesofa triangle to the less, so the radius to the

tangent of a certain angle ; then will the radius be to the tangent of the diffe-

rence between that angle and half a right angle, as the tangent of half the

sum of the angles, at thrbase of the triangle to the tangent of half their

dtff(rence.

Let ABC be a triangle, the sides of

which are BC and CA, and the base

AB, and let BC be greater than CA.
Let DC be drawn at right angles to

BC, and equal to AC ; join BD, and
.

because (Prop. 1.) in the right angled

triangle BCD, BC : CD : : R : tan

CBD, CBD is the angle of which the

tangent is to the radius as CD to BC,
that is, as CA to BC, or as the least

of the two sides of the triangle to the

greatest

But BC+CD : BC-CD : : tan i(CDB+CBD) :

tan \ (CDB-CBD) (Prop. 5.)

;

and also, BC+CA : BC—CA : : tan ^ (CAB+CBA)

:

un 1 (CAB—CBA). Therefore, since CD=CA,
tan I (CDB+CPD) : tan \ (CDB—CBD) :

:

tan |(CAB4-CBA): tan^(CAB—CBA). But because the

angles CDB+CBD=90o,tan J(CDB-fCBD) :

tan ^ (CDB—CBD) : : R : tan (45°-CBD), (2 Cor. Prop. 8.),

therefore, R : tan (45°—CBD) : : ton 1 (CAB+CBA) :

ton ^ (CAB—CBA) ; and CBD was already shewn to be such an angle

that BC : CA : : R : tan CBD.

CoR. If BC, CA, and the angle C are given to find the angles A and B ;

find an angle E such, that BC : CA : : R : ton E ; then R : ton (45°—E,
: : tan ^ (A+B) : tan \ (A—B). Thus \ (A—B) is found, and \ (A+B)
being given, A and B are each of them known. Lem. 2.

In reading the elements of Plane Trigonometry, it may be of use to ob-

serve, that the first five propoeitions contoin ail the rules absolutely neces-

sary for solving the difierent cases of plane triangles. The learner, when
he studies Trigonometry for the first time, may satisfy himself with tliese

propositions, but should by no means neglect the others in a subsequcn*

perusal.

PROP. VII. and VIII.

I have changed the demonstration which I gave of these propositions in

the first edition, for two others considerably simpler and more concise, given

me by Mr. Jardine, teacher of the Mathematics in Edinburgh, formerly

one ofmy pupils, to whose ingenuity and skill I am very glad to bear this

public testimony.



SPHERICAL

TRIGONOMETRY.

PROP V

The angles at the base of an isosceles spherical triangle are symmetrical

magnitudes, not admitting of being laid on one another, nor of coinciding,

notwithstanding their equality. It might be considered as a sufficient

proof that they are equal, to observe that they are each determined to be

of a certain magnitude rather than any other, by conditions which are pre-

cisely the same, so that there is no reason why one of them should be

greater than another. For the sake of those to whom this reasoning may
not prove satisfactory, the demonstration in the text is given, which is

strictly geometrical.

For the demonstrations of the two propositions that are given in the end

of the Appendix to the Spherical Trigonometry, see Elementa Sphaericorum,

Theor. 66. apud Wolfii Opera Math. torn, iii.; Trigonometric par Cagnoli

^ 463 : Trigonomftiia Spherique par Mauduit, ^ 165.

FINIS



















Wnwinu OCUI« ruu iftr fp^^

QA

P6

1856

Engineering

Playfair, John
Elements of geometry

PLEASE CXD NOT REMOVE

CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY




